【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點(diǎn)為E,該拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且BO=OC=3AO,直線y=﹣ x+1與y軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBC是等腰三角形?若存在,請(qǐng)直接寫(xiě)出符合條件的P點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:∵拋物線y=ax2+bx﹣3,
∴c=﹣3,
∴C(0,﹣3),
∴OC=3,
∵BO=OC=3AO,
∴BO=3,AO=1,
∴B(3,0),A(﹣1,0),
∵該拋物線與x軸交于A、B兩點(diǎn),
∴ ,
∴ ,
∴拋物線解析式為y=x2﹣2x﹣3
(2)
證明:由(1)知,拋物線解析式為y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴E(1,﹣4),
∵B(3,0),A(﹣1,0),C(0,﹣3),
∴BC=3 ,BE=2 ,CE= ,
∵直線y=﹣ x+1與y軸交于點(diǎn)D,
∴D(0,1),
∵B(3,0),
∴OD=1,OB=3,BD= ,
∴ , , ,
∴ ,
∴△BCE∽△BDO
(3)
解:存在,
理由:設(shè)P(1,m),
∵B(3,0),C(0,﹣3),
∴BC=3 ,PB= ,PC= ,
∵△PBC是等腰三角形,
①當(dāng)PB=PC時(shí),
∴ = ,
∴m=﹣1,
∴P(1,﹣1),
②當(dāng)PB=BC時(shí),
∴3 = ,
∴m=± ,
∴P(1, )或P(1,﹣ ),
③當(dāng)PC=BC時(shí),
∴3 = ,
∴m=﹣3± ,
∴P(1,﹣3+ )或P(1,﹣3﹣ ),
∴符合條件的P點(diǎn)坐標(biāo)為P(1,﹣1)或P(1, )或P(1,﹣ )或P(1,﹣3+ )或P(1,﹣3﹣ )
【解析】(1)先求出點(diǎn)C的坐標(biāo),在由BO=OC=3AO,確定出點(diǎn)B,A的坐標(biāo),最后用待定系數(shù)法求出拋物線解析式;(2)先求出點(diǎn)A,B,C,D,E的坐標(biāo),從而求出BC=3 ,BE=2 ,CE= ,OD=1,OB=3,BD= ,求出比值,得到 得出結(jié)論;(3)設(shè)出點(diǎn)P的坐標(biāo),表示出PB,PC,求出BC,分三種情況計(jì)算即可.此題是二次函數(shù)綜合題,主要考查了點(diǎn)的坐標(biāo)的確定方法,兩點(diǎn)間的距離公式,待定系數(shù)法,等腰三角形的性質(zhì),相似三角形的判定,解本題的關(guān)鍵是判斷△BCE∽△BDO.難點(diǎn)是分類.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),直線MN經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A作直線MN的垂線,垂足為點(diǎn)D,且∠BAC=∠DAC.
(1)猜想直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若CD=6,cos∠ACD= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知整數(shù)a1 , a2 , a3 , a4 , …滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2012的值為( )
A.﹣1005
B.﹣1006
C.﹣1007
D.﹣2012
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了落實(shí)省新課改精神,我是各校都開(kāi)設(shè)了“知識(shí)拓展類”、“體藝特長(zhǎng)類”、“實(shí)踐活動(dòng)類”三類拓展性課程,某校為了解在周二第六節(jié)開(kāi)設(shè)的“體藝特長(zhǎng)類”中各門(mén)課程學(xué)生的參與情況,隨機(jī)調(diào)查了部分學(xué)生作為樣本進(jìn)行統(tǒng)計(jì),繪制了如圖所示的統(tǒng)計(jì)圖(部分信息未給出)
根據(jù)圖中信息,解答下列問(wèn)題:
(1)求被調(diào)查學(xué)生的總?cè)藬?shù);
(2)若該校有200名學(xué)生參加了“體藝特長(zhǎng)類”中的各門(mén)課程,請(qǐng)估計(jì)參加棋類的學(xué)生人數(shù);
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)你給學(xué)校提一條合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在民族團(tuán)結(jié)宣傳活動(dòng)中,采用了四種宣傳形式:A唱歌,B舞蹈,C朗誦,D器樂(lè).全校的每名學(xué)生都選擇了一種宣傳形式參與了活動(dòng),小明對(duì)同學(xué)們選用的宣傳形式,進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如圖兩種不完整的統(tǒng)計(jì)圖表:
選項(xiàng) | 方式 | 百分比 |
A | 唱歌 | 35% |
B | 舞蹈 | a |
C | 朗誦 | 25% |
D | 器樂(lè) | 30% |
請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生共△人,a=△ , 并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校學(xué)生有2000人,請(qǐng)你估計(jì)該校喜歡“唱歌”這種宣傳形式的學(xué)生約有多少人?
(3)學(xué)校采用調(diào)查方式讓每班在A、B、C、D四種宣傳形式中,隨機(jī)抽取兩種進(jìn)行展示,請(qǐng)用樹(shù)狀圖或列表法,求某班抽到的兩種形式恰好是“唱歌”和“舞蹈”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AC=8,BD=6,OE⊥BC,垂足為點(diǎn)E,則OE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,則P,Q的大小關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=37°36′,在OB上有一點(diǎn)E,從E點(diǎn)射出一束光線經(jīng)OA上一點(diǎn)D反射,反射光線DC恰好與OB平行,則∠DEB的度數(shù)是( 。
A.75°36′
B.75°12′
C.74°36′
D.74°12′
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=﹣ x與反比例函數(shù)y= 的圖象交于關(guān)于原點(diǎn)對(duì)稱的A,B兩點(diǎn),已知A點(diǎn)的縱坐標(biāo)是3.
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線y=﹣ x向上平移后與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為48,求平移后的直線的函數(shù)表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com