(2006•長(zhǎng)春)如圖1,正方形ABCD的頂點(diǎn)A,B的坐標(biāo)分別為(0,10),(8,4),頂點(diǎn)C,D在第一象限.點(diǎn)P從點(diǎn)A出發(fā),沿正方形按逆時(shí)針?lè)较蜻\(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)E(4,0)出發(fā),沿x軸正方向以相同速度運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)求正方形ABCD的邊長(zhǎng);
(2)當(dāng)點(diǎn)P在AB邊上運(yùn)動(dòng)時(shí),△OPQ的面積S(平方單位)與時(shí)間t(s)之間的函數(shù)圖象為拋物線(xiàn)的一部分(如圖2所示),求P,Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)求(2)中面積S(平方單位)與時(shí)間t(s)的函數(shù)解析式及面積S取最大值時(shí)點(diǎn)P的坐標(biāo);
(4)若點(diǎn)P,Q保持(2)中的速度不變,則點(diǎn)P沿著AB邊運(yùn)動(dòng)時(shí),∠OPQ的大小隨著時(shí)間t的增大而增大;沿著B(niǎo)C邊運(yùn)動(dòng)時(shí),∠OPQ的大小隨著時(shí)間t的增大而減小.當(dāng)點(diǎn)P沿著這兩邊運(yùn)動(dòng)時(shí),能使∠OPQ=90°嗎?若能,直接寫(xiě)出這樣的點(diǎn)P的個(gè)數(shù);若不能,直接寫(xiě)不能.

【答案】分析:(1)本題要依靠輔助線(xiàn)的幫助.做BF垂直y軸,求出FB、FA、AB的值;
(2)由2可知,點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B用了10s,求出AB的值;
(3)本題有多種解法.作PG⊥y軸于G,證明△AGP∽△AFB,求出線(xiàn)段比.然后再求出S的面積以及拋物線(xiàn)的對(duì)稱(chēng)軸,最后求出t的最大值.
解答:解:(1)作BF⊥y軸于F.
∵A(0,10),B(8,4)
∴FB=8,F(xiàn)A=6,
∴AB=10;(2分)

(2)由圖2可知,點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B用了10s(1分)
∵AB=10
∴P、Q兩點(diǎn)的運(yùn)動(dòng)速度均為每秒一個(gè)單位長(zhǎng)度;(1分)

(3)解法1:作PG⊥y軸于G,則PG∥BF.
∴△AGP∽△AFB
,即

.(2分)
又∵OQ=4+t
(2分)

,且在0≤t≤10內(nèi),
∴當(dāng)時(shí),S有最大值.
此時(shí),
(2分)
解法2:由圖2,可設(shè)S=at2+bt+20,
∵拋物線(xiàn)過(guò)(10,28)
∴可再取一個(gè)點(diǎn),當(dāng)t=5時(shí),計(jì)算得,
∴拋物線(xiàn)過(guò)(),代入解析式,可求得a,b.評(píng)分參照解法1;

(4)這樣的點(diǎn)P有2個(gè).(2分)

點(diǎn)評(píng):本題考查的是二次函數(shù)的圖象以及二次函數(shù)解析式的靈活運(yùn)用,考生要學(xué)會(huì)看二次函數(shù)圖以及把二次函數(shù)的兩點(diǎn)式,頂點(diǎn)式的公式熟記于心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2006•長(zhǎng)春)如圖,將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△A′OB′.若點(diǎn)A的坐標(biāo)為(a,b),則點(diǎn)A'的坐標(biāo)為
(-b,a)
(-b,a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•長(zhǎng)春)如圖,P為拋物線(xiàn)y=x2-x+上對(duì)稱(chēng)軸右側(cè)的一點(diǎn),且點(diǎn)P在x軸上方,過(guò)點(diǎn)P作PA垂直x軸于點(diǎn)A,PB垂直y軸于點(diǎn)B,得到矩形PAOB.若AP=1,求矩形PAOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省寧波市十九中中考數(shù)學(xué)模擬考試四校聯(lián)考試卷(解析版) 題型:解答題

(2006•長(zhǎng)春)如圖,在平面直角坐標(biāo)系中,兩個(gè)函數(shù)y=x,y=-x+6的圖象交于點(diǎn)A.動(dòng)點(diǎn)P從點(diǎn)O開(kāi)始沿OA方向以每秒1個(gè)單位的速度運(yùn)動(dòng),作PQ∥x軸交直線(xiàn)BC于點(diǎn)Q,以PQ為一邊向下作正方形PQMN,設(shè)它與△OAB重疊部分的面積為S.
(1)求點(diǎn)A的坐標(biāo).
(2)試求出點(diǎn)P在線(xiàn)段OA上運(yùn)動(dòng)時(shí),S與運(yùn)動(dòng)時(shí)間t(秒)的關(guān)系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時(shí),S有最大值,并求出最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.
(4)若點(diǎn)P經(jīng)過(guò)點(diǎn)A后繼續(xù)按原方向、原速度運(yùn)動(dòng),當(dāng)正方形PQMN與△OAB重疊部分面積最大時(shí),運(yùn)動(dòng)時(shí)間t滿(mǎn)足的條件是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(夾灶初中 邵林明)(解析版) 題型:解答題

(2006•長(zhǎng)春)如圖1,正方形ABCD的頂點(diǎn)A,B的坐標(biāo)分別為(0,10),(8,4),頂點(diǎn)C,D在第一象限.點(diǎn)P從點(diǎn)A出發(fā),沿正方形按逆時(shí)針?lè)较蜻\(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)E(4,0)出發(fā),沿x軸正方向以相同速度運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)求正方形ABCD的邊長(zhǎng);
(2)當(dāng)點(diǎn)P在AB邊上運(yùn)動(dòng)時(shí),△OPQ的面積S(平方單位)與時(shí)間t(s)之間的函數(shù)圖象為拋物線(xiàn)的一部分(如圖2所示),求P,Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)求(2)中面積S(平方單位)與時(shí)間t(s)的函數(shù)解析式及面積S取最大值時(shí)點(diǎn)P的坐標(biāo);
(4)若點(diǎn)P,Q保持(2)中的速度不變,則點(diǎn)P沿著AB邊運(yùn)動(dòng)時(shí),∠OPQ的大小隨著時(shí)間t的增大而增大;沿著B(niǎo)C邊運(yùn)動(dòng)時(shí),∠OPQ的大小隨著時(shí)間t的增大而減。(dāng)點(diǎn)P沿著這兩邊運(yùn)動(dòng)時(shí),能使∠OPQ=90°嗎?若能,直接寫(xiě)出這樣的點(diǎn)P的個(gè)數(shù);若不能,直接寫(xiě)不能.

查看答案和解析>>

同步練習(xí)冊(cè)答案