【題目】將命題內(nèi)錯(cuò)角相等,寫成如果……,那么……”的形式:________________________________.

【答案】如果兩個(gè)角是內(nèi)錯(cuò)角,那么這兩個(gè)角相等

【解析】

根據(jù)命題的構(gòu)成,題設(shè)是內(nèi)錯(cuò)角,結(jié)論是這兩個(gè)角相等寫出即可.

解:內(nèi)錯(cuò)角相等改寫為:如果兩個(gè)角是內(nèi)錯(cuò)角,那么這兩個(gè)角相等.
故答案為:如果兩個(gè)角是內(nèi)錯(cuò)角,那么這兩個(gè)角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):

(1)( )4×()3×()2;

(2)an-1·an·a;

(3)(-x2)·(x3)·(-x)2;

(4)x2·x5+x·x2·x4;

(5)(x-y)2·(y-x)3+2(x-y)·(x-y)4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是( )
A.a3+a2=a5
B.a3a2=a6
C.(a23=a6
D.a6÷a3=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】藍(lán)莓種植生產(chǎn)基地產(chǎn)銷兩旺,采摘的藍(lán)莓部分加工銷售,部分直銷售,且當(dāng)天都能銷售完,直接銷售是40元/斤,加工銷售是130元/斤(不計(jì)損耗).已基地雇傭20名工人,每名工人只能參與采摘和加工中的一項(xiàng)工作,每人每天可以采摘70斤或加工35斤,設(shè)安排工人采摘藍(lán)莓,剩下的工人加工藍(lán)莓.

(1)若基地一天的總銷售收,求函數(shù)關(guān)系式;

(2)試求如何分配工人,才能使一天的銷售收入最大?并出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示,若ABC內(nèi)一點(diǎn)P滿足PAC=PBA=PCB,則點(diǎn)P為ABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)(Brocard point)是法國(guó)數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛(ài)好者法國(guó)軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問(wèn)題:已知在等腰直角三角形DEF中,EDF=90°,若點(diǎn)Q為DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=(

A.5 B.4 C.3+ D.2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,RtPAB的直角頂點(diǎn)P(3,4)在函數(shù)y=(x0)的圖象上,頂點(diǎn)A、B在函數(shù)y=(x0,0tk)的圖象上,PAx軸,連接OP,OA,記OPA的面積為SOPA,PAB的面積為SPAB,設(shè)w=SOPA﹣SPAB

求k的值以及w關(guān)于t的表達(dá)式;

若用wmax和wmin分別表示函數(shù)w的最大值和最小值,令T=wmax+a2﹣a,其中a為實(shí)數(shù),求Tmin

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)將圖②中的陰影部分面積用2種方法表示可得一個(gè)等式,求等式。
(2)若m+2n=7,mn=3,利用(1)的結(jié)論求m﹣2n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,其中.

(1)直接寫出關(guān)于的一元二次方程的一個(gè)根;

(2)證明:拋物線的頂點(diǎn)在第三象限;

(3)直線軸分別相交于兩點(diǎn),與拋物線相交于兩點(diǎn).設(shè)拋物線的對(duì)稱軸與軸相交于,如果在對(duì)稱軸左側(cè)的拋物線上存在點(diǎn),使相似.并且,求此時(shí)拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二元一次方程y2x1,用含x的代數(shù)式表示y,則y_____

查看答案和解析>>

同步練習(xí)冊(cè)答案