如圖,⊙O和⊙O′相交于A、B兩點(diǎn),AC是⊙O的直徑交⊙O′于點(diǎn)D,CB的延長(zhǎng)線交⊙O′于點(diǎn)E,如果AC=4,BE=10,BC=AD,則DE=
6
3
6
3
,∠E=
30°
30°
分析:首先連接AB,由AC是⊙O的直徑,可得∠ABC=90°,易證得△ABC∽△EDC,然后由相似三角形的對(duì)應(yīng)邊成比例,可求得BC,CD,CE的長(zhǎng),又由勾股定理求得DE的長(zhǎng),由特殊角的三角函數(shù)值,可求得∠E的度數(shù).
解答:解:連接AB,
∵AC是⊙O的直徑,
∴∠ABC=90°,
∴∠ABE=90°,
∴∠D=180°-∠ABE=90°,
∴∠ABC=∠D,
∴△ABC∽△EDC,
AC
CE
=
BC
CD
,
設(shè)BC=x,則AD=BC=x,CE=BC+BE=10+x,CD=AC+AD=4+x,
4
10+x
=
x
4+x
,
解得:x1=2,x2=-8(舍去),
∴BC=AD=2,CD=6,CE=12,
在Rt△CDE中,DE=
CE2-CD2
=6
3
;
∵sin∠E=
CD
CE
=
1
2
,
∴∠E=30°.
故答案為:6
3
,30°.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、勾股定理、相交圓的性質(zhì)以及特殊角的三角函數(shù)問(wèn)題.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,A和B兩個(gè)小機(jī)器人,自甲處同時(shí)出發(fā)相背而行,繞直徑為整數(shù)米的圓周上運(yùn)動(dòng),15分鐘內(nèi)相遇7次,如果A的速度每分鐘增加6米,則A和B在15分鐘內(nèi)相遇9次,問(wèn)圓周直徑至多是多少米?至少是多少米?(取π=3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某學(xué)校要在圍墻旁建一個(gè)長(zhǎng)方形的中藥材種植實(shí)習(xí)苗圃,苗圃的一邊靠圍墻(墻的長(zhǎng)度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長(zhǎng)方形ABCD.已知木欄總長(zhǎng)為120米,設(shè)AB邊的長(zhǎng)為x米,長(zhǎng)方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時(shí),S取得最值(請(qǐng)指出是最大值還是最小值)?并求出這個(gè)最值;
(2)學(xué)校計(jì)劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計(jì)為如圖所示的兩個(gè)相外切的等圓,其圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時(shí),請(qǐng)問(wèn)這個(gè)設(shè)計(jì)是否可行?若可行,求出圓的半徑;若不可行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分8分)

   某學(xué)校要在圍墻旁建一個(gè)長(zhǎng)方形的中藥材種植實(shí)習(xí)苗圃,苗圃的一邊靠圍墻(墻的長(zhǎng)度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長(zhǎng)方形ABCD。已知木欄總長(zhǎng)為120米,設(shè)AB邊的長(zhǎng)為x米,長(zhǎng)方形ABCD的面積為S平方米.

   1.(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時(shí),S取得最值(請(qǐng)指出是最大值還是最小值)?并求出這個(gè)最值;

   2.(2)學(xué)校計(jì)劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計(jì)為如圖所示的兩個(gè)相外切的等圓,其圓心分別為,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時(shí),請(qǐng)問(wèn)這個(gè)設(shè)計(jì)是否可行?若可行,求出圓的半徑;若不可行,清說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•成都)某學(xué)校要在圍墻旁建一個(gè)長(zhǎng)方形的中藥材種植實(shí)習(xí)苗圃,苗圃的一邊靠圍墻(墻的長(zhǎng)度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長(zhǎng)方形ABCD.已知木欄總長(zhǎng)為120米,設(shè)AB邊的長(zhǎng)為x米,長(zhǎng)方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時(shí),S取得最值(請(qǐng)指出是最大值還是最小值)?并求出這個(gè)最值;
(2)學(xué)校計(jì)劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計(jì)為如圖所示的兩個(gè)相外切的等圓,其圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時(shí),請(qǐng)問(wèn)這個(gè)設(shè)計(jì)是否可行?若可行,求出圓的半徑;若不可行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年四川省營(yíng)山縣九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿分8分)

    某學(xué)校要在圍墻旁建一個(gè)長(zhǎng)方形的中藥材種植實(shí)習(xí)苗圃,苗圃的一邊靠圍墻(墻的長(zhǎng)度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長(zhǎng)方形ABCD。已知木欄總長(zhǎng)為120米,設(shè)AB邊的長(zhǎng)為x米,長(zhǎng)方形ABCD的面積為S平方米.

    1.(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時(shí),S取得最值(請(qǐng)指出是最大值還是最小值)?并求出這個(gè)最值;

    2.(2)學(xué)校計(jì)劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計(jì)為如圖所示的兩個(gè)相外切的等圓,其圓心分別為,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時(shí),請(qǐng)問(wèn)這個(gè)設(shè)計(jì)是否可行?若可行,求出圓的半徑;若不可行,清說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案