【題目】一位運(yùn)動員推鉛球,鉛球運(yùn)行時離地面的高度(米)是關(guān)于運(yùn)行時間(秒)的二次函數(shù).已知鉛球剛出手時離地面的高度為米;鉛球出手后,經(jīng)過4秒到達(dá)離地面3米的高度,經(jīng)過10秒落到地面.如圖建立平面直角坐標(biāo)系.

(Ⅰ)為了求這個二次函數(shù)的解析式,需要該二次函數(shù)圖象上三個點(diǎn)的坐標(biāo).根據(jù)題意可知,該二次函數(shù)圖象上三個點(diǎn)的坐標(biāo)分別是____________________________;

(Ⅱ)求這個二次函數(shù)的解析式和自變量的取值范圍.

【答案】0 ),(43

【解析】試題分析:()根據(jù)剛出手時離地面高度為米、經(jīng)過4秒到達(dá)離地面3米的高度和經(jīng)過10秒落到地面可得三點(diǎn)坐標(biāo)

)利用待定系數(shù)法求解可得.

試題解析:()由題意知,該二次函數(shù)圖象上的三個點(diǎn)的坐標(biāo)分別是(0 )、(4,3)、(10,0).故答案為:0 )、(43)、(10,0).

)設(shè)這個二次函數(shù)的解析式為y=ax2+bx+c將()三點(diǎn)坐標(biāo)代入, ,解得 ,所以所求拋物線解析式為y=﹣x2+x+因為鉛球從運(yùn)動員拋出到落地所經(jīng)過的時間為10,所以自變量的取值范圍為0x10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:

甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作A,B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.

根據(jù)兩人的作法可判斷

A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星光廚具店購進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售其進(jìn)價與售價如表

進(jìn)價(元/臺)

售價(元/臺)

電飯煲

200

250

電壓鍋

160

200

1)一季度,廚具店購進(jìn)這兩種電器共30臺,用去了5600元,并且全部售完,問廚具店在該買賣中賺了多少錢?

2)為了滿足市場需求,二季度廚具店決定采購電飯煲和電壓鍋共50臺,且電飯煲的數(shù)量不大于電壓鍋的,請你通過計算判斷,如何進(jìn)貨廚具店賺錢最多?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點(diǎn)B關(guān)于AD的對稱點(diǎn)為B′,連接AB′CB′,CB′ADF點(diǎn).

1)如圖1,∠ABC=90°,求證:FCB′的中點(diǎn);

2)小宇通過觀察、實驗、提出猜想:如圖2,在點(diǎn)B繞點(diǎn)A旋轉(zhuǎn)的過程中,點(diǎn)F始終為CB′的中點(diǎn).小宇把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:過點(diǎn)B′B′GCDADG點(diǎn),只需證三角形全等;

想法2:連接BB′ADH點(diǎn),只需證HBB′的中點(diǎn);

想法3:連接BB′,BF,只需證∠B′BC=90°

請你參考上面的想法,證明FCB′的中點(diǎn).(一種方法即可)

3)如圖3,當(dāng)∠ABC=135°時,AB′CD的延長線相交于點(diǎn)E,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按如圖所示的程序計算.若開始輸入的的值為18,我們發(fā)現(xiàn)第1次得到的結(jié)果為9,第2次得到的結(jié)果為14,第3次得到的結(jié)果為7.……,請你探索第2019次得到的結(jié)果為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快遞員小王下午騎摩托車從總部出發(fā),在一條東西走向的街道上來回收送包裹.他行駛的情況記錄如下(向東記為,向西記為,單位:千米):

,,,,

1)小王最后是否回到了總部?

2)小王離總部最遠(yuǎn)是多少米?在總部的什么方向?

3)如果小王每走米耗油毫升,那么小王下午騎摩托車一共耗油多少毫升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,如果對角線ACBD相交并且相等,那么我們把這樣的四邊形稱為等角線四邊形.

1)在“平行四邊形、矩形、菱形,正方形”中, 一定是等角線四邊形(填寫圖形名稱);

2)若M、N、P、Q分別是等角線四邊形ABCD四邊AB、BC、CD、DA的中點(diǎn),當(dāng)對角線AC、BD還要滿足 時,四邊形MNPQ是正方形;

3)如圖2,已知△ABC中,∠ABC90°,AB4,BC3D為平面內(nèi)一點(diǎn).若四邊形ABCD是等角線四邊形,且ADBD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)ECD的中點(diǎn),點(diǎn)FBC上,且CF=2BF,連接AE,AF,若AF=,AE=7tanEAF=,則線段BF的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別是A(-3,2),B(-1,4),C(0,2).

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;

(2)平移△ABC,若A的對應(yīng)點(diǎn)A2的坐標(biāo)為(-5,-2),畫出平移后的△A2B2C2;

(3)若將△A2B2C2繞某一點(diǎn)旋轉(zhuǎn)可以得到△A1B1C,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案