【題目】如圖,直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)P是x軸上一動(dòng)點(diǎn),以點(diǎn)P為圓心,以1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線AB相切時(shí),點(diǎn)P的橫坐標(biāo)是_____
【答案】
【解析】
根據(jù)函數(shù)解析式求得A(3 ,0),B(0,-3),得到OA=3,OB=3根據(jù)勾股定理得到AB=6,設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=2,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
∵直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,
∴令x=0,得y=-3,令y=0,得x=3,
∴A(3,0),B(0.-3),
∴OA=3,OB=3,
∴AB=6,
設(shè)⊙P與直線AB相切于D,連接PD,
則PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴ ,
∴,
∴AP=2,
∴OP=3-2或OP=3+2,
∴P(3-2,0)或P(3+2,0),
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生會(huì)準(zhǔn)備調(diào)查六年級(jí)學(xué)生參加“武術(shù)類”、“書(shū)畫(huà)類”、“棋牌類”、“器樂(lè)類”四類校本課程的人數(shù).
(1)確定調(diào)查方式時(shí),甲同學(xué)說(shuō):“我到六年級(jí)(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說(shuō):“放學(xué)時(shí)我到校門口隨機(jī)調(diào)查部分同學(xué)”;丙同學(xué)說(shuō):“我到六年級(jí)每個(gè)班隨機(jī)調(diào)查一定數(shù)量的同學(xué)”.請(qǐng)指出哪位同學(xué)的調(diào)查方式最合理.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
武術(shù)類 | 0.25 | |
書(shū)畫(huà)類 | 20 | 0.20 |
棋牌類 | 15 | b |
器樂(lè)類 | ||
合計(jì) | a | 1.00 |
(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)以上圖表提供的信息解答下列問(wèn)題:
①a=_____,b=_____;
②在扇形統(tǒng)計(jì)圖中,器樂(lè)類所對(duì)應(yīng)扇形的圓心角的度數(shù)是_____;
③若該校六年級(jí)有學(xué)生560人,請(qǐng)你估計(jì)大約有多少學(xué)生參加武術(shù)類校本課程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:如圖①,直線l1∥l2,點(diǎn)A、B在直線l1上,點(diǎn)C、D在直線l2上,記△ABC的面積為S1,△ABD的面積為S2,求證:S1=S2.
拓展:如圖②,E為線段AB延長(zhǎng)線上一點(diǎn),BE>AB,正方形ABCD、正方形BEFG均在直線AB同側(cè),求證:△DEG的面積是正方形BEFG面積的一半.
應(yīng)用:如圖③,在一條直線上依次有點(diǎn)A、B、C、D,正方形ABIJ、正方形BCGH、正方形CDEF均在直線AB同側(cè),且點(diǎn)F、H分別是邊CG、BI的中點(diǎn),若正方形CDEF的面積為l,則△AGI的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于點(diǎn),交軸于點(diǎn)是直線下方拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)連接,是否存在點(diǎn),使面積最大,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(定義)在平面直角坐標(biāo)系中,對(duì)于函數(shù)圖象的橫寬、縱高給出如下定義:當(dāng)自變量x在范圍內(nèi)時(shí),函數(shù)值y滿足.那么我們稱b-a為這段函數(shù)圖象的橫寬,稱d-c為這段函數(shù)圖象的縱高.縱高與橫寬的比值記為k即:.
(示例)如圖1,當(dāng)時(shí);函數(shù)值y滿足,那么該段函數(shù)圖象的橫寬為2-(-1)=3,縱高為4-1=3.則.
(應(yīng)用)(1)當(dāng)時(shí),函數(shù)的圖象橫寬為 ,縱高為 ;
(2)已知反比例函數(shù),當(dāng)點(diǎn)M(3,4)和點(diǎn)N在該函數(shù)圖象上,且MN段函數(shù)圖象的縱高為2時(shí),求k的值.
(3)已知二次函數(shù)的圖象與x軸交于A點(diǎn),B點(diǎn).
①若m=1,是否存在這樣的拋物線段,當(dāng)()時(shí),函數(shù)值滿足若存在,請(qǐng)求出這段函數(shù)圖象的k值;若不存在,請(qǐng)說(shuō)明理由.
②如圖2,若點(diǎn)P在直線y=x上運(yùn)動(dòng),以點(diǎn)P為圓心,為半徑作圓,當(dāng)AB段函數(shù)圖象的k=1時(shí),拋物線頂點(diǎn)恰好落在上,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB,連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E,連接OC.
(1) 判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2) 若BE=,DE=3,求⊙O的半徑及AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某次臺(tái)風(fēng)來(lái)襲時(shí),垂直于地面的大樹(shù)AB被刮傾斜30°后,折斷倒在地上,樹(shù)的頂部恰好落在地面上點(diǎn)D處,大樹(shù)被折斷部分和地面所成的角∠ADC=45°,AD=4米,求這棵大樹(shù)AB原來(lái)的高度是多少米?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,BC=kAC,點(diǎn)D在AC上,連接BD.
(1)如圖1,當(dāng)k=1時(shí),BD的延長(zhǎng)線垂直于AE,垂足為E,延長(zhǎng)BC、AE交于點(diǎn)F.求證:CD=CF;
(2)過(guò)點(diǎn)C作CG⊥BD,垂足為G,連接AG并延長(zhǎng)交BC于點(diǎn)H.
①如圖2,若CH=CD,探究線段AG與GH的數(shù)量關(guān)系(用含k的代數(shù)式表示),并證明;
②如圖3,若點(diǎn)D是AC的中點(diǎn),直接寫(xiě)出cos∠CGH的值(用含k的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,AC=4,BC=3,點(diǎn)M、N分別是邊AC、AB上的動(dòng)點(diǎn),連接MN,將△AMN沿MN所在直線翻折,翻折后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′.
(1)如圖1,若點(diǎn)A′恰好落在邊AB上,且AN=AC,求AM的長(zhǎng);
(2)如圖2,若點(diǎn)A′恰好落在邊BC上,且A′N∥AC.
①試判斷四邊形AMA′N的形狀并說(shuō)明理由;
②求AM、MN的長(zhǎng);
(3)如圖3,設(shè)線段NM、BC的延長(zhǎng)線交于點(diǎn)P,當(dāng)且時(shí),求CP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com