【題目】如圖,網(wǎng)格中每個(gè)小正方形的邊長為1,點(diǎn)B、C的坐標(biāo)分別為(-1, 3), (0, 1).

(1)建立符合條件的直角坐標(biāo)系(要求標(biāo)出x軸,y軸和原點(diǎn)),并寫出點(diǎn)A的坐標(biāo)

(2)線段AB上任意一點(diǎn)的坐標(biāo)可以表示為

(3)y軸上找到一點(diǎn)P,使得SABP = 3SABC,求出點(diǎn)P的坐標(biāo).

【答案】1)見解析,A-43);(2)(x,3)(-4≤x≤-1);(3P0,9)或P0,-3

【解析】

1)將C0,1)向下平移1格即可得到原點(diǎn)位置,作出坐標(biāo)系,再根據(jù)A的位置寫出坐標(biāo);

2ABx軸,縱坐標(biāo)都為3,橫坐標(biāo)在-4-1之間,據(jù)此可解答;

3)易得SABC=3,可求出SABP=9,設(shè)P點(diǎn)坐標(biāo)為(0m),以AB為底邊,根據(jù)面積公式列方程求解.

解:(1)如圖所示,點(diǎn)A坐標(biāo)為(-4,3);

2)∵A-4,3),B-1,3

∴線段AB上任意一點(diǎn)的坐標(biāo)可表示為(x,3)(-4≤x≤-1.

3)由圖可得SABP=3SABC=,

P點(diǎn)坐標(biāo)為(0,m),則

解得9

所以P點(diǎn)坐標(biāo)為(0,9)或(0-3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,,點(diǎn)點(diǎn)出發(fā)沿路徑向終點(diǎn)的速度運(yùn)動(dòng),同時(shí)點(diǎn)點(diǎn)出發(fā)沿路徑向終點(diǎn)的速度運(yùn)動(dòng),兩點(diǎn)都要到達(dá)相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng).分別過,則當(dāng)運(yùn)動(dòng)時(shí)間____________時(shí),與去全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角坐標(biāo)平面上的,,且,,.若拋物線經(jīng)過、兩點(diǎn).

的值;

將拋物線向上平移若干個(gè)單位得到的新拋物線恰好經(jīng)過點(diǎn),求新拋物線的解析式;

設(shè)中的新拋物的頂點(diǎn)點(diǎn),為新拋物線上點(diǎn)至點(diǎn)之間的一點(diǎn),以點(diǎn)為圓心畫圖,當(dāng)軸和直線都相切時(shí),聯(lián)結(jié),求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表為某班學(xué)生成績的次數(shù)分配表.已知全班共有人,且眾數(shù)為分,中位數(shù)為分,則之值為________

成績

(分)

次數(shù)

(人)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=90°, P為射線BC上任意一點(diǎn)(點(diǎn)P和點(diǎn)B不重合),分別以AB,AP為邊在∠ABC內(nèi)部作等邊ABE和等邊APQ, 連結(jié)QE并延長交BP于點(diǎn)F, FQ=6, AB=2,BP=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),延長于點(diǎn)

求證:四邊形是矩形;

,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列一段文字,然后回答下列問題.

已知在平面內(nèi)有兩點(diǎn)P1 x1y1 ,P1 x2y2 其兩點(diǎn)間的距離P1P2 = ,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可化簡為|x2 x1||y2 y1|.

(1)已知 A (1,4)、B (-3,5),試求 A.B兩點(diǎn)間的距離;

(2)已知 AB在平行于 y軸的直線上,點(diǎn) A的縱坐標(biāo)為-8,點(diǎn) B的縱坐標(biāo)為-1,試求 A、B兩點(diǎn)的距 離;

(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為 D(1,6)、E(-2,2)F(4,2),你能判定此三角形的形狀嗎?說明理由:

(4)(3)的條件下,平面直角坐標(biāo)系中,在 x軸上找一點(diǎn) P,使 PD+PF的長度最短,求出點(diǎn) P的坐 標(biāo)以及 PD+PF的最短長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰三角形,ABAC,點(diǎn)DAB上一點(diǎn),過點(diǎn)DDEBCBC于點(diǎn)E,交CA延長線于點(diǎn)F

1)證明:ADF是等腰三角形;

2)若∠B60°,BD4AD2,求EC的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點(diǎn)F,DHBCH,交BEG.下列結(jié)論:①BD=CD;AD+CF=BD;CE=BF;AE=BG.其中正確的是

A. ①② B. ①③ C. ①②③ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案