【題目】如圖,網(wǎng)格中每個(gè)小正方形的邊長為1,點(diǎn)B、C的坐標(biāo)分別為(-1, 3), (0, 1).
(1)建立符合條件的直角坐標(biāo)系(要求標(biāo)出x軸,y軸和原點(diǎn)),并寫出點(diǎn)A的坐標(biāo)
(2)線段AB上任意一點(diǎn)的坐標(biāo)可以表示為
(3)在y軸上找到一點(diǎn)P,使得S△ABP = 3S△ABC,求出點(diǎn)P的坐標(biāo).
【答案】(1)見解析,A(-4,3);(2)(x,3)(-4≤x≤-1);(3)P(0,9)或P(0,-3)
【解析】
(1)將C(0,1)向下平移1格即可得到原點(diǎn)位置,作出坐標(biāo)系,再根據(jù)A的位置寫出坐標(biāo);
(2)AB∥x軸,縱坐標(biāo)都為3,橫坐標(biāo)在-4到-1之間,據(jù)此可解答;
(3)易得S△ABC=3,可求出S△ABP=9,設(shè)P點(diǎn)坐標(biāo)為(0,m),以AB為底邊,根據(jù)面積公式列方程求解.
解:(1)如圖所示,點(diǎn)A坐標(biāo)為(-4,3);
(2)∵A(-4,3),B(-1,3)
∴線段AB上任意一點(diǎn)的坐標(biāo)可表示為(x,3)(-4≤x≤-1).
(3)由圖可得S△ABP=3S△ABC=,
P點(diǎn)坐標(biāo)為(0,m),則
解得或9
所以P點(diǎn)坐標(biāo)為(0,9)或(0,-3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,點(diǎn)從點(diǎn)出發(fā)沿路徑向終點(diǎn)以的速度運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿路徑向終點(diǎn)以的速度運(yùn)動(dòng),兩點(diǎn)都要到達(dá)相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng).分別過和作于,于,則當(dāng)運(yùn)動(dòng)時(shí)間____________時(shí),與去全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角坐標(biāo)平面上的,,,且,,.若拋物線經(jīng)過、兩點(diǎn).
求、的值;
將拋物線向上平移若干個(gè)單位得到的新拋物線恰好經(jīng)過點(diǎn),求新拋物線的解析式;
設(shè)中的新拋物的頂點(diǎn)點(diǎn),為新拋物線上點(diǎn)至點(diǎn)之間的一點(diǎn),以點(diǎn)為圓心畫圖,當(dāng)與軸和直線都相切時(shí),聯(lián)結(jié)、,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表為某班學(xué)生成績的次數(shù)分配表.已知全班共有人,且眾數(shù)為分,中位數(shù)為分,則之值為________.
成績 (分) | ||||||||
次數(shù) (人) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=90°, P為射線BC上任意一點(diǎn)(點(diǎn)P和點(diǎn)B不重合),分別以AB,AP為邊在∠ABC內(nèi)部作等邊△ABE和等邊△APQ, 連結(jié)QE并延長交BP于點(diǎn)F, 若FQ=6, AB=2,則BP=__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,延長交于點(diǎn).
求證:四邊形是矩形;
若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列一段文字,然后回答下列問題.
已知在平面內(nèi)有兩點(diǎn)P1 x1,y1 ,P1 x2,y2 其兩點(diǎn)間的距離P1P2 = ,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可化簡為|x2 x1|或|y2 y1|.
(1)已知 A (1,4)、B (-3,5),試求 A.、B兩點(diǎn)間的距離;
(2)已知 A、B在平行于 y軸的直線上,點(diǎn) A的縱坐標(biāo)為-8,點(diǎn) B的縱坐標(biāo)為-1,試求 A、B兩點(diǎn)的距 離;
(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為 D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形狀嗎?說明理由:
(4)在(3)的條件下,平面直角坐標(biāo)系中,在 x軸上找一點(diǎn) P,使 PD+PF的長度最短,求出點(diǎn) P的坐 標(biāo)以及 PD+PF的最短長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,點(diǎn)D是AB上一點(diǎn),過點(diǎn)D作DE⊥BC交BC于點(diǎn)E,交CA延長線于點(diǎn)F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,DH⊥BC于H,交BE于G.下列結(jié)論:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正確的是
A. ①② B. ①③ C. ①②③ D. ①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com