(2009•陜西)如圖,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB繞點O順時針旋轉(zhuǎn)α角度得到的.若點A′在AB上,則旋轉(zhuǎn)角α的大小可以是( )

A.30°
B.45°
C.60°
D.90°
【答案】分析:根據(jù)旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,圖形的大小、形狀都不改變,進行分析.
解答:解:∵∠AOB=90°,∠B=30°,
∴∠A=60°.
∵△A′OB′可以看作是由△AOB繞點O順時針旋轉(zhuǎn)α角度得到的,
∴OA=OA′.
∴△OAA′是等邊三角形.
∴∠AOA′=60°,即旋轉(zhuǎn)角α的大小可以是60°.
故選C
點評:本題考查圖形旋轉(zhuǎn)的性質(zhì)及等邊三角形的知識.難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•陜西)如圖,在平面直角坐標(biāo)系中,OB⊥OA,且OB=2OA,點A的坐標(biāo)是(-1,2)
(1)求點B的坐標(biāo);
(2)求過點A、O、B的拋物線的表達式;
(3)連接AB,在(2)中的拋物線上求出點P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年陜西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•陜西)如圖,在平面直角坐標(biāo)系中,OB⊥OA,且OB=2OA,點A的坐標(biāo)是(-1,2)
(1)求點B的坐標(biāo);
(2)求過點A、O、B的拋物線的表達式;
(3)連接AB,在(2)中的拋物線上求出點P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2009•陜西)如圖,AB∥CD,直線EF分別交AB、CD于點E、F,∠1=47°,則∠2的大小是    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年安徽省蕪湖市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:填空題

(2009•陜西)如圖,在銳角△ABC中,AB=4,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年陜西省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•陜西)如圖,圓與圓之間不同的位置關(guān)系有( )

A.2種
B.3種
C.4種
D.5種

查看答案和解析>>

同步練習(xí)冊答案