【題目】某商店銷(xiāo)售一種成本為的水產(chǎn)品,若按銷(xiāo)售,一個(gè)月可售出,售價(jià)毎漲元,月銷(xiāo)售量就減少

寫(xiě)出月銷(xiāo)售利潤(rùn)(元)與售價(jià)(元)之間的函數(shù)表達(dá)式;

當(dāng)售價(jià)定為多少元時(shí),該商店月銷(xiāo)售利潤(rùn)為元?

當(dāng)售價(jià)定為多少元時(shí)會(huì)獲得最大利潤(rùn)?求出最大利潤(rùn).

【答案】(1)y;(2)當(dāng)售價(jià)定為元或元時(shí),該商店月銷(xiāo)售利潤(rùn)為元;

當(dāng)售價(jià)為元,利潤(rùn)最大,最大利潤(rùn)是元.

【解析】

(1)根據(jù)月銷(xiāo)售利潤(rùn)=每千克的利潤(rùn)×數(shù)量就可以表示出月銷(xiāo)售利潤(rùn)y(單位:元)與售價(jià)x(單位:元/千克)之間的函數(shù)解析式;
(2)當(dāng)y=8000時(shí),代入(1)的解析式求出結(jié)論即可,
(3)將(1)的解析式化為頂點(diǎn)式就可以求出結(jié)論.

解:(1)由題意,得
y=(x-40)[500-10(x-50)],
y=-10x2+1400x-40000=
答:y與x之間的函數(shù)關(guān)系式為:y=-10x2+1400x-40000;
(2)由題意,得
8000=-10x2+1400x-40000,
解得:x1=60,x2=80.

答:銷(xiāo)售單價(jià)應(yīng)定為80元;
(3)∵y=-10x2+1400x-40000.
∴y=-10(x-70)2+9000.
∴a=-10<0,y有最大值.
∴當(dāng)x=70時(shí).y最大=9000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子里有1個(gè)紅球,1個(gè)黃球和n個(gè)白球,它們除顏色外其余都相同.

(1)從這個(gè)袋子里摸出一個(gè)球,記錄其顏色,然后放回,搖均勻后,重復(fù)該實(shí)驗(yàn),經(jīng)過(guò)大量實(shí)驗(yàn)后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于0.5左右,求n的值;

(2)在(1)的條件下,先從這個(gè)袋中摸出一個(gè)球,記錄其顏色,放回,搖均勻后,再?gòu)拇忻鲆粋(gè)球,記錄其顏色.請(qǐng)用畫(huà)樹(shù)狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個(gè)球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n是實(shí)數(shù),定義運(yùn)算“*”為:m*nmn+n

1)分別求4*(﹣2)與4*的值;

2)若關(guān)于x的方程x*a*x)=﹣有兩個(gè)相等的實(shí)數(shù)根,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,AC、BD相交于點(diǎn)O,能判別這個(gè)四邊形是正方形的條件是(

A.OA =OB =OC=OD,ACBDB.ABCDAC=BD

C.ADBC,∠A=CD.OA=OC,OB=ODAB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點(diǎn)E,F分別在CD,AD上,CE=DF,BE,CF相交于點(diǎn)G.

1)求BGC的度數(shù);

2)若CE=1HBF的中點(diǎn)時(shí),求HG的長(zhǎng)度;

3)若圖中陰影部分的面積與正方形ABCD的面積之比為23,求△BCG的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,PAB上一點(diǎn),連接CP,以下條件中不能判定△ACP∽△ABC的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABCCEABEBFACF

1)求證:△AFB∽△AEC;

2)求證:△AEFA∽△ABC;

3)若∠A=60°時(shí),求△AFE與△ABC面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,M為直線lxa上一點(diǎn),N是直線l外一點(diǎn),且直線MNx軸不平行,若MN為某個(gè)矩形的對(duì)角線,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為直線l伴隨矩形.如圖為直線l伴隨矩形的示意圖.

1)已知點(diǎn)A在直線lx2上,點(diǎn)B的坐標(biāo)為(3,﹣2

①若點(diǎn)A的縱坐標(biāo)為0,則以AB為對(duì)角線的直線l伴隨矩形的面積是 

②若以AB為對(duì)角線的直線l伴隨矩形是正方形,求直線AB的表達(dá);

2)點(diǎn)P在直線lxm上,且點(diǎn)P的縱坐標(biāo)為4,若在以點(diǎn)(21),(﹣21),(﹣2,﹣1),(2,﹣1)為頂點(diǎn)的四邊形上存在一點(diǎn)Q,使得以PQ為對(duì)角線的直線l伴隨矩形為正方形,直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAB中,∠ABO90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Bx軸正半軸上,若雙曲線yx0)與△OAB的邊AO、AB分別交于點(diǎn)C、D,點(diǎn)CAO的中點(diǎn),連接OD、CD.若SOBD3,則SOCD為( 。

A.3B.4C.D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案