【題目】如圖,在菱形ABCD中,點(diǎn)E是BC邊的中點(diǎn),動(dòng)點(diǎn)M在CD邊上運(yùn)動(dòng),以EM為折痕將△CEM折疊得到△PEM,聯(lián)接PA,若AB=4,∠BAD=60°,則PA的最小值是( 。
A. B. 2 C. 2﹣2 D. 4
【答案】C
【解析】分析:當(dāng)A,P,E在同一直線(xiàn)上時(shí),AP最短,過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F,依據(jù)BE=BC=2,∠EBF=60°,即可得到AE的長(zhǎng)度,進(jìn)而得出AP的最小值.
解:如圖,EP=CE=BC=2,故點(diǎn)P在以E為圓心,EP為半徑的半圓上,
∵AP+EP≥AE,
∴當(dāng)A,P,E在同一直線(xiàn)上時(shí),AP最短,
如圖,過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F,
∵在邊長(zhǎng)為4的菱形ABCD中,∠BAD=60°,E為BC的中點(diǎn),
∴BE=BC=2,∠EBF=60°,
∴∠BEF=30°,BF=BE=1,
∴EF==,AF=5,
∴AE==2,
∴AP的最小值=AE-PE=2-2,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠BAC的平分線(xiàn)與BC的垂直平分線(xiàn)DG相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,
(1)連接CD、BD,求證:△CDF≌△BDE;
(2)若AE=5,AC=3,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷(xiāo)考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷(xiāo)售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿(mǎn)足一次函數(shù)關(guān)系:當(dāng)銷(xiāo)售單價(jià)為22元時(shí),銷(xiāo)售量為36本;當(dāng)銷(xiāo)售單價(jià)為24元時(shí),銷(xiāo)售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷(xiāo)售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷(xiāo)售單價(jià)是多少元?
(3)設(shè)該文具店每周銷(xiāo)售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷(xiāo)售單價(jià)定為多少元時(shí),才能使文具店銷(xiāo)售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過(guò)點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說(shuō)法正確的是( )
A. 若AD⊥BC,則四邊形AEDF是矩形 B. 若BD=CD,則四邊形AEDF是菱形
C. 若AD垂直平分BC,則四邊形AEDF是矩形 D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD中,點(diǎn)E,F(xiàn)分別為BC,CD上的點(diǎn),連接AE,BF相交于點(diǎn)H,且AE⊥BF.
(1)如圖1,連接AC交BF于點(diǎn)G,求證:∠AGF=∠AEB+45°;
(2)如圖2,延長(zhǎng)BF到點(diǎn)M,連接MC,若∠BMC=45°,求證:AH+BH=BM;
(3)如圖3,在(2)的條件下,若點(diǎn)H為BM的三等分點(diǎn),連接BD,DM,若HE=1,求△BDM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ABC=50°,P為△ABC內(nèi)一點(diǎn),過(guò)點(diǎn)P的直線(xiàn)MN分別交AB、BC于點(diǎn)M、N.若M在PA的中垂線(xiàn)上,N在PC的中垂線(xiàn)上,則∠APC的度數(shù)為____________°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把甲、乙兩張形狀、大小相同但畫(huà)面不同的風(fēng)景圖片按同樣的方式剪成相同的2段,混合洗勻.
(1)從這堆圖片中隨機(jī)抽出一張,放回混合洗勻,再抽出一張,則抽出的這兩張圖片恰好 可以拼成同一張風(fēng)景圖片的概率為 ;
(2)從這堆圖片中隨機(jī)抽出兩張,求抽出的這兩張圖片恰好可以組成甲圖片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm. 兩個(gè)動(dòng)點(diǎn)P、Q分別從B、C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P以1厘米/秒的速度沿著線(xiàn)段BC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q以2厘米/秒的速度沿著線(xiàn)段CA向點(diǎn)A運(yùn)動(dòng).
(1)P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,經(jīng)過(guò)幾秒后,△PCQ的面積等于4厘米2?經(jīng)過(guò)幾秒后PQ的長(zhǎng)度等于5厘米?
(2)在P、Q兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,四邊形ABPQ的面積能否等于11厘米2?試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com