如圖,在Rt△ABC中,∠C=90°,∠A=60°,BC=4cm,以點(diǎn)C為圓心,以3cm長(zhǎng)為半徑作圓,則⊙C與AB的位置關(guān)系是______.
過C作CD⊥AB,垂足為D,
∵∠C=90°,∠A=60°,
∴∠B=30°,
∵BC=4cm,
∴CD=2cm,
∵2<3,
∴⊙C與直線AB相交.
故答案為:相交.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB切⊙O于A、B,∠APB=60゜,PA=4,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線AP是⊙O的切線,點(diǎn)P為切點(diǎn),∠APQ=∠CPQ,則圖中與CQ相等的線段是( 。
A.PQB.PBC.PCD.BQ

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O,交AB于D,E為BC中點(diǎn),連ED.
(1)求證:ED是⊙O的切線;
(2)若⊙O半徑為3,ED=4,求AB長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB=6
2
,O為AB的中點(diǎn),AC,BD都是半徑為3的⊙O的切線,C,D為切點(diǎn),則
CD
的長(zhǎng)為( 。
A.
3
2
π
B.
3
4
π
C.3
2
D.3π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,∠PAQ是直角,半徑為5的⊙O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B、C.
(1)BT是否平分∠OBA?證明你的結(jié)論;
(2)若已知AT=4,試求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:△ABC中,∠C=90°,AC=8cm,AB=10cm,點(diǎn)P由點(diǎn)C出發(fā)以每秒2cm的速度沿線段CA向點(diǎn)A運(yùn)動(dòng)(不運(yùn)動(dòng)到A點(diǎn)),⊙O的圓心在BP上,且⊙O分別與AB、AC相切,當(dāng)點(diǎn)P運(yùn)動(dòng)2秒鐘時(shí),⊙O的半徑是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在等腰梯形ABCD中,ADBC,AB=DC,且BC=2.以CD為直徑作⊙O1交AD于點(diǎn)E,過點(diǎn)E作EF⊥AB于點(diǎn)F.建立如圖所示的平面直角坐標(biāo)系,已知A、B兩點(diǎn)坐標(biāo)分別為A(2,0),B(0,2
3
).
(1)求C,D兩點(diǎn)的坐標(biāo);
(2)求證:EF為⊙O1的切線;
(3)線段CD上是否存在點(diǎn)P,使以點(diǎn)P為圓心,PD為半徑的⊙P與y軸相切.如果存在,請(qǐng)求出P點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點(diǎn),∠BAC=30°.
(1)求∠P的大。
(2)若AB=6,求PA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案