【題目】設(shè)a、b是一元二次方程x2﹣2x﹣1=0的兩個根,則a2+a+3b的值為____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù),可以作為直角三角形的三邊長的是( 。
A. 7,24,25 B. 5,13,15 C. 2,3,4 D. 8,12,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等腰直角三角形,BC=AC,直角頂點C在x軸上,一角頂點B在y軸上.
(1)如圖①若AD⊥x軸,垂足為點D.點C坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(0,2),求A點的坐標(biāo).
(2)如圖②,直角邊BC在兩坐標(biāo)軸上滑動,若y軸恰好平分∠ABC,AC與y軸交于點D,過點A作AE⊥y軸于E,求證:BD=2AE.
(3)如圖③,直角邊BC在兩坐標(biāo)軸上滑動,使點A在第四象限內(nèi),過A點作AF⊥y軸于F,在滑動的過程中,兩個結(jié)論:① 為定值;② 為定值,只有一個結(jié)論成立,請你判斷正確的結(jié)論并求出定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:如圖,已知在△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點,點P在線段BC上由B點向C點運動,同時,點Q在線段CA上由點C向點A運動.
(1)如果點P、Q的速度均為3厘米/秒,經(jīng)過1秒后,△BPD與△CQP是否全等?請說明理由;
(2)若點P的運動速度為2厘米/秒,點Q的運動速度為2.5厘米/秒,是否存在某一個時刻,使得△BPD與△CQP全等?如果存在請求出這一時刻并證明;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把能平分四邊形面積的直線稱為“好線”.利用下面的作圖,可以得到四邊形的“好線”:在四邊形ABCD(圖2)中,取對角線BD的中點O,連接OA、OC.得折線AOC,再過點O作OE∥AC交CD于E,則直線AE即為四邊形ABCD的一條“好線”.
(1)如圖(1),試說明中線AD平分△ABC的面積;
(2)如圖(2),請你探究四邊形ABCO的面積和四邊形ABCD面積的關(guān)系,并說明理由;
(3)解:在圖(2)中,請你說明直線AE是四邊形ABCD的一條“好線”;
(4)如圖(3),若AE為一條“好線”,F(xiàn)為AD邊上的一點,請作出四邊形ABCD經(jīng)過F點的“好線”,并對你的畫圖作適當(dāng)說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù): .
(1)設(shè)李明每月獲得利潤為w(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護(hù)眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價×銷售量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com