【題目】在Rt△ABC中,∠ACB=90°,D,E是邊AB上兩點(diǎn),且CE所在直線垂直平分線段AD,CD平分∠BCE,AC=5cm,則BD的長(zhǎng)為( )
A. 5cm B. 6cm C. 7cm D. 8cm
【答案】A
【解析】
根據(jù)CE垂直平分AD,得AC=CD,再根據(jù)等腰三角形的三線合一,得∠ACE=∠ECD,結(jié)合角平分線定義和∠ACB=90°,得∠ACE=∠ECD=∠DCB=30°,則∠A=60°,進(jìn)而求得∠B=30°,則BD=CD=AC.
因?yàn)?/span>CE垂直平分AD,
所以AC=CD=5cm.
所以∠ACE=∠ECD.
因?yàn)?/span>CD平分∠ECB,
所以∠ECD=∠DCB.
因?yàn)椤?/span>ACB=90°,
所以∠ACE=∠ECD=∠DCB=30°.
所以∠A=90°∠ACE=60°.
所以∠B=90°∠A=30°.
所以∠DCB=∠B.
所以BD=CD=5cm.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于下列各組條件,不能判定△≌△的一組是 ( )
A. ∠A=∠A′,∠B=∠B′,AB=A′B′
B. ∠A=∠A′,AB=A′B′,AC=A′C′
C. ∠A=∠A′,AB=A′B′,BC=B′C′
D. AB=A′B′,AC=A′C′,BC=B′C′
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣8mx+16m﹣1(m>0)與x軸的交點(diǎn)分別為A(x1 , 0),B(x2 , 0).
(1)求證:拋物線總與x軸有兩個(gè)不同的交點(diǎn);
(2)若AB=2,求此拋物線的解析式.
(3)已知x軸上兩點(diǎn)C(2,0),D(5,0),若拋物線y=mx2﹣8mx+16m﹣1(m>0)與線段CD有交點(diǎn),請(qǐng)寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2)
(1)寫(xiě)出點(diǎn)A、B的坐標(biāo):A( , )、B( , )
(2)將△ABC先向左平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,得到△A′B′C′,畫(huà)出△A′B′C′
(3)寫(xiě)出三個(gè)頂點(diǎn)坐標(biāo)A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(2,3),B(1,1),C(4,1),M(6,3).
(1)將△ABC平原得到△A1B1C1 , 其中點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別是A1 , B1 , C1 , 且點(diǎn)A1的坐標(biāo)是(3,6),在圖中畫(huà)出△A1B1C1 .
(2)將(1)中的△A1B1C1繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的△A2B2C2(其中點(diǎn)A2 , B2 , C2的對(duì)應(yīng)點(diǎn)分別是A1 , B1 , C1),并寫(xiě)出點(diǎn)A2 , B2 , C2的坐標(biāo).
(3)(2)中的△A2B2C2能通過(guò)旋轉(zhuǎn)△ABC得到嗎?若能,請(qǐng)寫(xiě)出旋轉(zhuǎn)的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn) E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB,AC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根.第三邊BC的長(zhǎng)為5,當(dāng)△ABC是等腰三角形時(shí),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=kx+b經(jīng)過(guò)點(diǎn)B(1,4),且與直線y=﹣x﹣11平行.
(1)求直線AB的解析式并求出點(diǎn)C的坐標(biāo);
(2)根據(jù)圖象,寫(xiě)出關(guān)于x的不等式0<2x﹣4<kx+b的解集;
(3)現(xiàn)有一點(diǎn)P在直線AB上,過(guò)點(diǎn)P作PQ∥y軸交直線y=2x﹣4于點(diǎn)Q,若線段PQ的長(zhǎng)為3,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名男生推鉛球,鉛球行進(jìn)高度y(單位:m)與水平距離x(單位:m)之間的關(guān)系是y=﹣ x2+ x+ ,鉛球運(yùn)行路線如圖.
(1)求鉛球推出的水平距離;
(2)通過(guò)計(jì)算說(shuō)明鉛球行進(jìn)高度能否達(dá)到4m?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com