【題目】如圖所示,半圓O的直徑AB=10cm,弦AC=6cm,將半圓沿著過點A的直線折疊,折疊后使得弦AC恰好落在直徑AB上,則折痕AD的長為_______cm.
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉90°,得到△DCM.
(1)求證:EF=FM
(2)當AE=1時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線相交于點A1,得∠A1;∠A1BC和∠A1CD的平分線相交于點A2,得∠A2;…;∠A2018BC和∠A2018CD的平分線交于點A2019,則∠A2019=________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點,與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點.
(1)求一次函數(shù)的解析式;
(2)根據圖象直接寫出kx+b﹣<0的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉,當點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉,當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐﹣四邊形旋轉中的數(shù)學
“智慧”數(shù)學小組在課外數(shù)學活動中研究了一個問題,請幫他們解答.
任務一:如圖1,在矩形ABCD中,AB=6,AD=8,E,F(xiàn)分別為AB,AD邊的中點,四邊形AEGF為矩形,連接CG.
(1)請直接寫出CG的長是______.
(2)如圖2,當矩形AEGF繞點A旋轉(比如順時針旋轉)至點G落在邊AB上時,請計算DF與CG的長,通過計算,試猜想DF與CG之間的數(shù)量關系.
(3)當矩形AEGF繞點A旋轉至如圖3的位置時,(2)中DF與CG之間的數(shù)量關系是否還成立?請說明理由.
任務二:“智慧”數(shù)學小組對圖形的旋轉進行了拓展研究,如圖4,在ABCD中,∠B=60°,AB=6,AD=8,E,F(xiàn)分別為AB,AD邊的中點,四邊形AEGF為平行四邊形,連接CG.“智慧”數(shù)學小組發(fā)現(xiàn)DF與CG仍然存在著特定的數(shù)量關系.
(4)如圖5,當AEGF繞點A旋轉(比如順時針旋轉),其他條件不變時,“智慧”數(shù)學小組發(fā)現(xiàn)DF與CG仍然存在著這一特定的數(shù)量關系.請你直接寫出這個特定的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=5cm,BC=3cm,AC=4cm,若動點P從點C開始,按C→A→B的路徑運動,且速度為每秒2cm,設出發(fā)的時間為t秒
(1)請判斷△ABC的形狀,說明理由.
(2)當t= 時,△BCP是以BC為腰的等腰三角形.
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒1cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,P、Q兩點之間的距離為?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長AO交O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:
(1)求證:CD是⊙O的切線;
(2)若BC=4,CD=6,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.
例如:因為23=8,所以(2,8)=3.
(1)根據上述規(guī)定,填空:
(3,9)=_____,(5,125)=_____,(,)=_____,(-2,-32)=_____.
(2)令,,,試說明下列等式成立的理由:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com