如圖,正方形ABCD的邊長(zhǎng)為4,P為對(duì)角線AC上一點(diǎn),且CP=3
2
,PE⊥PB交CD于點(diǎn)E,則PE=______.
連接BE,設(shè)CE的長(zhǎng)為x
∵AC為正方形ABCD的對(duì)角線,正方形邊長(zhǎng)為4,CP=3
2

∴∠BAP=∠PCE=45°,AP=4
2
-3
2
=
2

∴BP2=AB2+AP2-2AB×AP×cos∠BAP=42+(
2
2-2×4×
2
×
2
2
=10
PE2=CE2+CP2-2CE×CP×cos∠PCE=(3
2
2+x2-2x×3
2
×
2
2
=x2-6x+18
BE2=BC2+CE2=16+x2
在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2
∴PE2=22-6×2+18=10
∴PE=
10

故答案為
10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在正方形ABCD中,AC、BD交于點(diǎn)O,OE⊥DC于點(diǎn)E,若OE=2cm,則正方形ABCD的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,阿倉(cāng)用一張邊長(zhǎng)為27.6公分的正方形厚紙板,剪下邊長(zhǎng)皆為3.8公分的四個(gè)正方形,形成一個(gè)有眼、鼻、口的面具.求此面具的面積為多少平方公分(  )
A.552B.566.44C.656.88D.704

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD和正方形CGEF(CG>BC),B、C、G在同一直線上,M為線段AE的中點(diǎn),試問:線段MD與線段MF的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,正方形ABCD的邊長(zhǎng)為1,動(dòng)點(diǎn)E、F分別在邊AB、對(duì)角線BD上(點(diǎn)E與點(diǎn)A、B都不重合)且AE=
2
DF
(1)設(shè)DF=x,CF2=y,求:y與x的函數(shù)關(guān)系式,并寫出定義域;
(2)求證:FC=FE;
(3)是否存在以線段AE、DF、CF的長(zhǎng)為邊的直角三角形?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn)且∠AEF=90°,EF交正方形外角平分線CF于點(diǎn)F,取邊AB的中點(diǎn)G,連接EG.
求證:EG=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD中,G是CD邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)G與C、D不重合),以CG為一邊向正方形ABCD外作正方形GCEF,連接DE,連接BG并延長(zhǎng)交DE于H.
(1)求證:∠BGC=∠DEC.
(2)若正方形ABCD的邊長(zhǎng)為1,試問當(dāng)點(diǎn)G運(yùn)動(dòng)到什么位置時(shí),BH垂直平分DE?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的有( 。
①當(dāng)AB=BC時(shí),它是菱形;②當(dāng)AC⊥BD時(shí),它是菱形;③當(dāng)∠ABC=90°時(shí),它是矩形;④當(dāng)AC=BD時(shí),它是正方形.
A.1組B.2組C.3組D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將下列常見圖形的序號(hào)填在相應(yīng)的空格內(nèi):
①線段;②角;③兩條相交直線;④等腰直角三角形;⑤正方形;⑥正五邊形;⑦正八邊形;③圓.
(1)只有二條對(duì)稱軸的軸對(duì)稱圖形有______;
(2)只有兩條對(duì)稱軸的軸對(duì)稱圖形有______;
(3)有三條或三條以上對(duì)稱軸的軸對(duì)稱圖形有______;
(4)旋轉(zhuǎn)對(duì)稱圖形有______;
(5)中心對(duì)稱圖形有______.

查看答案和解析>>

同步練習(xí)冊(cè)答案