【題目】已知:△ABC是等腰直角三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解決下列問(wèn)題:

(1)如圖①,若點(diǎn)P在線段AB上,且AC=1+ , PA= , 則:
①線段PB= ,PC= ;
②猜想:PA2 , PB2 , PQ2三者之間的數(shù)量關(guān)系為 ;
(2)如圖 , 若點(diǎn)PAB的延長(zhǎng)線上,在(1)中所猜想的結(jié)論仍然成立,請(qǐng)你利用圖給出證明過(guò)程;
(3)若動(dòng)點(diǎn)P滿足 , 求的值.(提示:請(qǐng)利用備用圖進(jìn)行探求)

【答案】
(1);2;PA2+PB2=PQ2
(2)

解:如圖②:過(guò)點(diǎn)C作CD⊥AB,垂足為D.

∵△ACB為等腰直角三角形,CD⊥AB,

∴CD=AD=DB.

∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DCPD+PD2,

PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DCPD+PD2,

∴AP2+BP2=2CD2+2PD2

∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,

∴AP2+BP2=2PC2

∵△CPQ為等腰直角三角形,

∴2PC2=PQ2

∴AP2+BP2=PQ2


(3)

解:如圖③:過(guò)點(diǎn)C作CD⊥AB,垂足為D.

①當(dāng)點(diǎn)P位于點(diǎn)P1處時(shí).

=,

在Rt△CP1D中,由勾股定理得:,

在Rt△ACD中,由勾股定理得:

②當(dāng)點(diǎn)P位于點(diǎn)P2處時(shí).

,

在Rt△CP2D中,由勾股定理得:,

在Rt△ACD中,由勾股定理得:AC===DC,

綜上所述,的比值為


【解析】(1)①在等腰直角三角形ACB中,由勾股定理先求得AB的長(zhǎng),然后根據(jù)PA的長(zhǎng),可求得PB的長(zhǎng);過(guò)點(diǎn)C作CD⊥AB,垂足為D,從而可求得CD、PD的長(zhǎng),然后在Rt三角形CDP中依據(jù)勾股定理可求得PC的長(zhǎng);②△ACB為等腰直角三角形,CD⊥AB,從而可求得:CD=AD=DB,然后根據(jù)AP=DC﹣PD,PB=DC+PD,可證明AP2+BP2=2PC2 , 因?yàn)樵赗t△PCQ中,PQ2=2CP2 , 所以可得出AP2+BP2=PQ2
(2)過(guò)點(diǎn)C作CD⊥AB,垂足為D,則AP=(AD+PD)=(DC+PD),PB=(DP﹣BD)=(PD﹣DC),可證明AP2+BP2=2PC2 , 因?yàn)樵赗t△PCQ中,PQ2=2CP2 , 所以可得出AP2+BP2=PQ2的結(jié)論;
(3)根據(jù)點(diǎn)P所在的位置畫(huà)出圖形,然后依據(jù)題目中的比值關(guān)系求得PD的長(zhǎng)(用含有CD的式子表示),然后在Rt△ACP和Rt△DCP中由勾股定理求得AC和PC的長(zhǎng)度即可.
此題綜合考查了通過(guò)構(gòu)造直角三角形,利用勾股定理解題的知識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD邊長(zhǎng)為8cm,F(xiàn)G是等腰直角△EFG的斜邊,F(xiàn)G=10cm,點(diǎn)B、F、C、G都在直線l上,△EFG以1cm/s的速度沿直線l向右做勻速運(yùn)動(dòng),當(dāng)t=0時(shí),點(diǎn)G與B重合,記t(0≤t≤8)秒時(shí),正方形與三角形重合部分的面積是Scm2 , 則S與t之間的函數(shù)關(guān)系圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面問(wèn)題:2+22+23+24+…+22015﹣1的末位數(shù)字是(  )
A.0
B.3
C.4
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程(a﹣1)x2﹣2x+2=0有實(shí)數(shù)根,則整數(shù)a的最大值為( 。
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A和點(diǎn)B(﹣2,n),與x軸交于點(diǎn)C(﹣1,0),連接OA.

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若點(diǎn)P在坐標(biāo)軸上,且滿足PA=OA,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(5,4),⊙M與y軸相切于點(diǎn)C,與x軸相交于A,B兩點(diǎn).

(1)則點(diǎn)A,B,C的坐標(biāo)分別是A( ,  ),B( ,  ),C(  ,  );
(2)設(shè)經(jīng)過(guò)A,B兩點(diǎn)的拋物線解析式為y=(x﹣5)2+k,它的頂點(diǎn)為E,求證:直線EA與⊙M相切;
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,且點(diǎn)P在x軸的上方,使△PBC是等腰三角形?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣2x+2與兩坐標(biāo)軸分別交于A、B兩點(diǎn),將線段OA分成n等份,分點(diǎn)分別為P1 , P2 , P3 , …,Pn﹣1 , 過(guò)每個(gè)分點(diǎn)作x軸的垂線分別交直線AB于點(diǎn)T1 , T2 , T3 , …,Tn﹣1 , 用S1 , S2 , S3 , …,Sn﹣1分別表示Rt△T1OP1 , Rt△T2P1P2 , …,Rt△Tn﹣1Pn﹣2Pn﹣1的面積,則當(dāng)n=2015時(shí),S1+S2+S3+…+Sn﹣1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,折疊矩形OABC的一邊BC,使點(diǎn)C落在OA邊的點(diǎn)D處,已知折痕BE=,且=,以O(shè)為原點(diǎn),OA所在的直線為x軸建立如圖所示的平面直角坐標(biāo)系,拋物線l:y=x2+x+c經(jīng)過(guò)點(diǎn)E,且與AB邊相交于點(diǎn)F.

(1)求證:△ABD∽△ODE;
(2)若M是BE的中點(diǎn),連接MF,求證:MF⊥BD;
(3)P是線段BC上一點(diǎn),點(diǎn)Q在拋物線l上,且始終滿足PD⊥DQ,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,能否使得PD=DQ?若能,求出所有符合條件的Q點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣2)0+(﹣1+4cos30°﹣||

查看答案和解析>>

同步練習(xí)冊(cè)答案