一個任意三角形有________條對稱軸,等腰三角形有________條對稱軸,任意平行四邊形有________條對稱軸,菱形有________條對稱軸,正方形有________條對稱軸,圓有________條對稱軸.

答案:
解析:

0,1,0,2,4,無數(shù)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

26、閱讀:
我們約定,若一個三角形(記為△M1)是由另一個三角形(記為△M)通過一次平移得到的,稱為△M經(jīng)過T變換得到△M1,若一個三角形(記為△M2)是由另一個三角形(記為△M)通過繞其任一邊中點(diǎn)旋轉(zhuǎn)180°得到的,稱為△M經(jīng)過R變換得到△M2.以下所有操作中每一個三角形只可進(jìn)行一次變換,且變換均是從圖中的基本三角形△A開始的,通過變換形成的多邊形中的任意兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.
操作:
(1)如圖,由△A經(jīng)過R變換得到△A1,又由△A1經(jīng)過
R
變換得到△A2,再由△A2經(jīng)過
T
變換得到△A3,形成了一個大三角形,記作△B.
(2)在下圖的基礎(chǔ)上繼續(xù)變換下去得到△C,若△C的一條邊上恰有3個基本三角形(指有一條邊在該邊上的基本三角形),則△C含有
9
個基本三角形;若△C的一條邊上恰有11個基本三角形,則△C含有
121
個基本三角形;
應(yīng)用:
(3)若△A是正三角形,你認(rèn)為通過以上兩種變換可以得到的正多邊形是
正六邊形,正三角形
;
(4)請你用兩次R變換和一次T變換構(gòu)成一個四邊形,畫出示意圖,并仿照下圖作出標(biāo)記.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

相傳2500年前,古希臘著名數(shù)學(xué)家畢達(dá)哥拉斯從朋友家的地磚鋪成的地面上找到了直角三角形三邊的關(guān)系:“任意直角三角形,都有兩直角邊的平方和等于斜邊的平方.”這就是著名的“勾股定理”.它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系(如圖).
根據(jù)“勾股定理”,我們就可以由已知兩條直角邊的長來求斜邊的長.
如:a=1,b=1時,12+12=c2,c=
12+12
=
2
;a=1,b=2時,c=
12+22
=
5
;

請你根據(jù)上述材料,完成下列問題:
(1)a=1,b=3時,c=
10
10
;
(2)如果斜邊長為
13
,則直角邊為正整數(shù)
2
2
3
3

(3)請你在數(shù)軸上畫出表示
13
的點(diǎn)(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法中,正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

下列命題錯誤的是


  1. A.
    三個點(diǎn)確定一個圓
  2. B.
    三角形有且只有一個外接圓
  3. C.
    三角形的內(nèi)心是三角形三條內(nèi)角平分線的交點(diǎn)
  4. D.
    三角形的外心是三角形中任意兩邊垂直平分線的交點(diǎn)

查看答案和解析>>

同步練習(xí)冊答案