【題目】 如圖,在中,,,.點(diǎn)D從點(diǎn)C出發(fā)沿方向以每秒4個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿方向以每秒2個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒.過點(diǎn)D作于點(diǎn)F,連接、.
(1)求證:;
(2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(3)當(dāng)t為何值時(shí),為直角三角形?請說明理由.
【答案】(1)詳見解析;(2)能,當(dāng)時(shí),四邊形為菱形;(3)當(dāng)或時(shí),為直角三角形,理由詳見解析
【解析】
(1)由,,證出;
(2)先證明四邊形為平行四邊形.得出,,若為等邊三角形,則為菱形,得出,,求出;
(3)分三種情況討論:①時(shí);②時(shí);③時(shí),第③種情況不存在;分別求出t的值即可.
解:(1)證明:在中,,,
又
;
(2)能;
理由如下:
,
.
又,
四邊形為平行四邊形.
,
平行四邊形為菱形,則
,
即當(dāng)時(shí),四邊形為菱形;
(3)當(dāng)或時(shí),為直角三角形;
理由如下:
①時(shí),四邊形為矩形.
在中,,
.即,
②時(shí),由(2)知,
.
即
③時(shí),
,
點(diǎn)E運(yùn)動(dòng)到點(diǎn)B處,用了秒,
同時(shí)點(diǎn)D也運(yùn)動(dòng)秒鐘,點(diǎn)D就和點(diǎn)A重合,
點(diǎn)F也就和點(diǎn)B重合,
點(diǎn)不能構(gòu)成三角形.
此種情況不存在;
綜上所述,當(dāng)或時(shí),△DEF為直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)紙箱中,裝有紅色、黃色、白色的塑料球共200個(gè)這些小球除顏色外其他都完全相同,將球充分搖勻后,從中隨機(jī)摸出一個(gè)球,記下它的顏色后再放回箱中,不斷重復(fù)這一過程,小明發(fā)現(xiàn)其中摸到白色球、黃色球的頻率分別穩(wěn)定在15%和45%,則這個(gè)紙箱中紅色球的個(gè)數(shù)可能有( )
A. 30個(gè) B. 80個(gè) C. 90個(gè) D. 120個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是反比例y=(x>0)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點(diǎn)B的反比例函數(shù)圖象的表達(dá)式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)A(﹣1,3),與x軸的一個(gè)交點(diǎn)B(﹣4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①2a﹣b=0;②abc<0;③拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)是(3,0);④方程ax2+bx+c﹣3=0有兩個(gè)相等的實(shí)數(shù)根;⑤當(dāng)﹣4<x<﹣1時(shí),則y2<y1.
其中正確的是( 。
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,延長DA于點(diǎn)E,使得,連接BE.
求證:四邊形AEBC是矩形;
過點(diǎn)E作AB的垂線分別交AB,AC于點(diǎn)F,G,連接CE交AB于點(diǎn)O,連接OG,若,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過點(diǎn)A(1,0),且當(dāng)x=0和x=5時(shí)所對應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣+bx+c的圖象分別交于B,C兩點(diǎn),點(diǎn)B在第一象限.
(1)求二次函數(shù)y=﹣+bx+c的表達(dá)式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點(diǎn),將點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在軸的負(fù)半軸、軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過點(diǎn)M的反比例函數(shù)y=(x<0)的圖象交AB于點(diǎn)N,的圖象交AB于點(diǎn)N, S矩形OABC=32,tan∠DOE=,,則BN的長為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在半徑為13的⊙O中,弦AB∥CD,弦AB和CD的距離為7,若AB=24,則CD的長為
A. 10 B. C. 10或 D. 10或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中有3個(gè)大小相同的小球,球面上分別寫有數(shù)字1,2,3,從袋中隨機(jī)摸出一個(gè)小球,記錄下數(shù)字后放回,再隨機(jī)摸出一個(gè)小球.
(1)請用樹狀圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;
(2)求兩次摸出球上的數(shù)字的積為奇數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com