【題目】某商場(chǎng)銷售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500元.市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4部.
(1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷售利潤(rùn)達(dá)到多少元?
(2)若設(shè)每部手機(jī)降低x元,每天的銷售利潤(rùn)為y元,試寫出y與x之間的函數(shù)關(guān)系式.
(3)商場(chǎng)要想獲得最大利潤(rùn),每部手機(jī)的售價(jià)應(yīng)訂為為多少元?此時(shí)的最大利潤(rùn)是多少元?
【答案】(1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷售利潤(rùn)達(dá)到4800元;
(2);
(3)每臺(tái)彩電降價(jià)150元時(shí),商場(chǎng)每天銷售這種彩電的利潤(rùn)最大,最大利潤(rùn)是5000元.
【解析】
試題(1)當(dāng)售價(jià)為2800元時(shí),銷售價(jià)降低100元,平均每天就能售出16部.即可求出每天利潤(rùn);
(2)根據(jù):利潤(rùn)=(每臺(tái)實(shí)際售價(jià)﹣每臺(tái)進(jìn)價(jià))×銷售量,每臺(tái)實(shí)際售價(jià)=2900﹣x,銷售量=8+4×,列函數(shù)關(guān)系式;
(3)利用二次函數(shù)的頂點(diǎn)坐標(biāo)公式,求函數(shù)的最大值.
試題解析:(1)當(dāng)售價(jià)為2800元時(shí),銷售價(jià)降低100元,平均每天就能售出16部.
所以:這種手機(jī)平均每天的銷售利潤(rùn)為:(元);
(2)根據(jù)題意,得,
即;
(3)對(duì)于,
當(dāng)時(shí),
所以,每臺(tái)彩電降價(jià)150元時(shí),商場(chǎng)每天銷售這種彩電的利潤(rùn)最大,最大利潤(rùn)是5000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的對(duì)角線和相交于點(diǎn),正方形的邊交于點(diǎn),交于點(diǎn).
(1)求證:;
(2)如果正方形的邊長(zhǎng)為,那么正方形繞點(diǎn)轉(zhuǎn)動(dòng)的過(guò)程中,與正方形重疊部分的面積始終等于__________.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017浙江省溫州市)小黃準(zhǔn)備給長(zhǎng)8m,寬6m的長(zhǎng)方形客廳鋪設(shè)瓷磚,現(xiàn)將其劃分成一個(gè)長(zhǎng)方形ABCD區(qū)域Ⅰ(陰影部分)和一個(gè)環(huán)形區(qū)域Ⅱ(空白部分),其中區(qū)域Ⅰ用甲、乙、丙三種瓷磚鋪設(shè),且滿足PQ∥AD,如圖所示.
(1)若區(qū)域Ⅰ的三種瓷磚均價(jià)為300元/m2,面積為S(m2),區(qū)域Ⅱ的瓷磚均價(jià)為200元/m2,且兩區(qū)域的瓷磚總價(jià)為不超過(guò)12000元,求S的最大值;
(2)若區(qū)域Ⅰ滿足BC=2:3,區(qū)域Ⅱ四周寬度相等.
①求AB,BC的長(zhǎng);
②若甲、丙兩瓷磚單價(jià)之和為300元/m2,乙、丙瓷磚單價(jià)之比為5:3,且區(qū)域Ⅰ的三種瓷磚總價(jià)為4800元,求丙瓷磚單價(jià)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC的A、B、C三點(diǎn)坐標(biāo)為A(2,0)、B(2,2)、C(6,3)。
(1) 請(qǐng)?jiān)趫D中畫出一個(gè)△,使△與△ABC是以坐標(biāo)原點(diǎn)為位似中心,相似比為2的位似圖形。
(2)求△的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以正方形的中心O為頂點(diǎn)作一個(gè)直角,直角的兩邊分別交正方形的兩邊BC、DC于E、F點(diǎn),問(wèn):
(1)△BOE與△COF有什么關(guān)系?證明你的結(jié)論(提示:正方形的對(duì)角線把正方形分成全等的四個(gè)等腰直角三角形,即正方形的對(duì)角線垂直相等且相互平分);
(2)若正方形的邊長(zhǎng)為2,四邊形EOFC的面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)已知二次函數(shù)的圖象如圖.
(1)求它的對(duì)稱軸與軸交點(diǎn)D的坐標(biāo);
(2)將該拋物線沿它的對(duì)稱軸向上平移,設(shè)平移后的拋物線與軸,軸的交點(diǎn)分別為A、B、C三點(diǎn),若∠ACB=90°,求此時(shí)拋物線的解析式;
(3)設(shè)(2)中平移后的拋物線的頂點(diǎn)為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,的頂點(diǎn)是底邊的中點(diǎn),兩邊分別與交于點(diǎn).
(1)如圖1, ,當(dāng)的位置變化時(shí),是否隨之變化?證明你的結(jié)論;
(2)如圖2,當(dāng),當(dāng) °時(shí),(1)中的結(jié)論仍然成立,求出此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=13,BC=10,點(diǎn)D為BC的中點(diǎn),DE⊥AB于點(diǎn)E,則tan ∠BDE=
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,為的中點(diǎn),過(guò)點(diǎn)作垂直于點(diǎn),交的延長(zhǎng)線于點(diǎn).為中點(diǎn),交于,為邊上一點(diǎn),連接,且.
(1)若,求的長(zhǎng)度;
(2)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com