【題目】如圖,一張扇形紙片OAB,∠AOB120°,OA6,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O重合,折痕為CD,則圖中未重疊部分(即陰影部分)的面積為(

A.9B.12π9C.D.

【答案】A

【解析】

根據(jù)陰影部分的面積=S扇形BDOS弓形OD計(jì)算即可.

由折疊可知,

S弓形AD=S弓形OD,DA=DO

OA=OD,

AD=OD=OA,

∴△AOD為等邊三角形,

∴∠AOD=60°.

∵∠AOB=120°,

∴∠DOB=60°.

AD=OD=OA=6,

AC=CO=3

CD=3,

S弓形AD=S扇形ADOSADO6×39,

S弓形OD=6π9

陰影部分的面積=S扇形BDOS弓形OD(6π9)=9

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,BC4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊,在坐標(biāo)軸上,點(diǎn)的坐標(biāo)為,點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿軸向點(diǎn)運(yùn)動(dòng);點(diǎn)從點(diǎn)同時(shí)出發(fā),以相同的速度沿軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)停止運(yùn)動(dòng),點(diǎn)也停止運(yùn)動(dòng).連接,過點(diǎn)的垂線,與過點(diǎn)平行于軸的直線相交于點(diǎn)D,軸交于點(diǎn),連接,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.

1)求的度數(shù)及點(diǎn)的坐標(biāo)(用表示).

2)當(dāng)為何值時(shí),為等腰三角形?

3)探索周長是否隨時(shí)間的變化而變化.若變化,說明理由;若不變,試求出這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)外,連接,,且

1)若,求的度數(shù);

2)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)團(tuán)委會(huì)開展書法、誦讀、演講、征文四個(gè)項(xiàng)目(每人只參加一個(gè)項(xiàng)目)的比賽,初三(1)班全體同學(xué)都參加了比賽,為了解比賽的具體情況,小明收集整理數(shù)據(jù)后,繪制了以下不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,根據(jù)圖表中的信息解答下列各題:

(1)初三(1)班的總?cè)藬?shù)為 ,扇形統(tǒng)計(jì)圖中“征文”部分的圓心角度數(shù)為 度;

(2)請(qǐng)把折線統(tǒng)計(jì)圖補(bǔ)充完整;

(3)平平和安安兩個(gè)同學(xué)參加了比賽,請(qǐng)用“列表法”或“畫樹狀圖法”,求出他們參加的比賽項(xiàng)目相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某童裝店購進(jìn)一批20/件的童裝,由銷售經(jīng)驗(yàn)知,每天的銷售量y(件)與銷售單價(jià)x(元)之間存在如圖的一次函數(shù)關(guān)系.

1)求yx之間的函數(shù)關(guān)系;

2)當(dāng)銷售單價(jià)定為多少時(shí),每天可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2-x-m+1)=0有兩個(gè)不相等的實(shí)數(shù)根

1)求m的取值范圍;

2)若m為符合條件的最小整數(shù),求此方程的根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的點(diǎn)A(0,﹣2)、點(diǎn)B(3m,4m+1)(m﹣1),點(diǎn)C(6,2),則對(duì)角線BD的最小值是( 。

A. 3 B. 2 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)數(shù)學(xué)活動(dòng)小組在學(xué)習(xí)了利用三角函數(shù)測(cè)高后,選定測(cè)量小河對(duì)岸一幢建筑物BC的高度,他們先在斜坡上的D處,測(cè)得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測(cè)得建筑物頂端B的仰角是60°,點(diǎn)E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果用含有根號(hào)的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案