【題目】如圖,已知函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A、B,點(diǎn)B的坐標(biāo)為(2,2).過(guò)點(diǎn)A作AC⊥x軸,垂足為C,過(guò)點(diǎn)B作BD⊥y軸,垂足為D,AC與BD交于點(diǎn)F.一次函數(shù)y=ax+b的圖象經(jīng)過(guò)點(diǎn)A、D,與x軸的負(fù)半軸交于點(diǎn)E

(1)若AC=OD,求a、b的值。
(2)若BC∥AE,求BC的長(zhǎng)。

【答案】
(1)

解;∵點(diǎn)B(2,2)在函數(shù)y=(x>0)的圖象上,

∴k=4,則y=

∵BD⊥y軸,∴D點(diǎn)的坐標(biāo)為:(0,2),OD=2,

∵AC⊥x軸,AC=OD,∴AC=3,即A點(diǎn)的縱坐標(biāo)為:3,

∵點(diǎn)A在y=的圖象上,∴A點(diǎn)的坐標(biāo)為:(,3),

∵一次函數(shù)y=ax+b的圖象經(jīng)過(guò)點(diǎn)A、D,

解得:


(2)

解;設(shè)A點(diǎn)的坐標(biāo)為:(m,),則C點(diǎn)的坐標(biāo)為:(m,0),

∵BD∥CE,且BC∥DE,

∴四邊形BCED為平行四邊形,

∴CE=BD=2,

∵BD∥CE,∴∠ADF=∠AEC,

∴在Rt△AFD中,tan∠ADF==

在Rt△ACE中,tan∠AEC==,

=

解得:m=1,

∴C點(diǎn)的坐標(biāo)為:(1,0),則BC=


【解析】(1)首先利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)性質(zhì)得出k的值,再得出A、D點(diǎn)坐標(biāo),進(jìn)而求出a,b的值;
(2)設(shè)A點(diǎn)的坐標(biāo)為:(m,),則C點(diǎn)的坐標(biāo)為:(m,0),得出tan∠ADF==,tan∠AEC==,進(jìn)而求出m的值,即可得出答案.
此題考查了一次函數(shù)與反比例函數(shù)交點(diǎn)問(wèn)題,即通過(guò)點(diǎn)坐標(biāo)求參數(shù)和解析式,通過(guò)點(diǎn)坐標(biāo)和三角函數(shù)的應(yīng)用求坐標(biāo)和線段長(zhǎng)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于 MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④SDAC:SABC=1:3.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,OA=5.OA與⊙O相交于點(diǎn)P,AB與⊙O相切于點(diǎn)B,BP的延長(zhǎng)線交直線l于點(diǎn)C.

(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若PC=2 ,求⊙O的半徑和線段PB的長(zhǎng);
(3)若在⊙O上存在點(diǎn)Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,⊙O過(guò)AC的中點(diǎn)D,DE為⊙O的切線.

(1)求證:DE⊥BC;
(2)如果DE=2,tanC= ,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CD是高,CE是中線,CE=CB,點(diǎn)A、D關(guān)于點(diǎn)F對(duì)稱(chēng),過(guò)點(diǎn)F作FG∥CD,交AC邊于點(diǎn)G,連接GE.AC=18,BC=12,則△CEG的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象如圖所示,根據(jù)圖中提供的信息,有下列說(shuō)法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時(shí),兩人行程均為10km;③出發(fā)后1.5小時(shí),甲的行程比乙多3km;④甲比乙先到達(dá)終點(diǎn).其中正確的有( 。

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由大小兩種貨車(chē),3輛大車(chē)與4輛小車(chē)一次可以運(yùn)貨22噸,2輛大車(chē)與6輛小車(chē)一次可以運(yùn)貨23噸.請(qǐng)根據(jù)以上信息,提出一個(gè)能用方程(組)解決的問(wèn)題,并寫(xiě)出這個(gè)問(wèn)題的解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課題小組從某市20000名九年級(jí)男生中,隨機(jī)抽取了1000名進(jìn)行50米跑測(cè)試,并根據(jù)測(cè)試結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖表.

等級(jí)

人數(shù)/名

優(yōu)秀

a

良好

b

及格

150

不及格

50

解答下列問(wèn)題:
(1)a= ,b=
(2)補(bǔ)全條形統(tǒng)計(jì)圖

(3)試估計(jì)這20000名九年級(jí)男生中50米跑達(dá)到良好和優(yōu)秀等級(jí)的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是圓O的切線,切點(diǎn)為B,直線AO交圓O于C、D兩點(diǎn),CD=2,∠DAB=30°,動(dòng)點(diǎn)P在直線AB上運(yùn)動(dòng),PC交圓O于另一點(diǎn)Q.

(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到使Q、C兩點(diǎn)重合時(shí)(如圖1),求AP的長(zhǎng);
(2)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,有幾個(gè)位置(幾種情況)使△CQD的面積為?(直接寫(xiě)出答案)
(3)當(dāng)△CQD的面積為,且Q位于以CD為直徑的上半圓,CQ>QD時(shí)(如圖2),求AP的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案