【題目】已知(x+1)(x+q)的結(jié)果中不含x的一次項(xiàng),則常數(shù)q=

【答案】﹣1
【解析】解:(x+1)(x+q)=x2+(q+1)x+q,
由結(jié)果不含x的一次項(xiàng),得到q+1=0,
解得:q=﹣1,
故答案為:﹣1.
原式利用多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,整理后根據(jù)結(jié)果不含x的一次項(xiàng),求出q的值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市自來水收費(fèi)實(shí)行階梯水價(jià),收費(fèi)標(biāo)準(zhǔn)如下表所示:

(1)某用戶四月份用水量為16噸,需交水費(fèi)為多少元?
(2)某用戶五月份交水費(fèi)50元,所用水量為多少噸?
(3)某用戶六月份用水量為a噸,需要交水費(fèi)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.

(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,試判斷DG與BC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某種時(shí)令商品每件成本為20元, 經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量 ()與時(shí)間 ()的關(guān)系如下表:

時(shí)間/

1

3

6

10

36

日銷售量/

94

90

84

76

24

未來40天內(nèi),前20天每天的價(jià)格 (/)與時(shí)間 ()的函數(shù)關(guān)系式為

(1≤≤20且為整數(shù)),后20天每天的價(jià)格 (/)與時(shí)間()的函數(shù)關(guān)系式 (21≤≤40且為整數(shù))

下面我們就來研究銷售這種商品的有關(guān)問題:

(1)認(rèn)真分析上表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的 ()()之間的關(guān)系式;

(2)請(qǐng)預(yù)測(cè)未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?

(3)在實(shí)際銷售的前20天中,該公司決定每銷售一件商品,就捐贈(zèng)元利潤(4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷售利潤隨時(shí)間()的增大而增大,請(qǐng)直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校買來鋼筆若干枝,可以平均分給(x﹣1)名同學(xué),也可分給(x﹣2)名同學(xué)(x為正整數(shù)).用代數(shù)式表示鋼筆的數(shù)量不可能的是(  )
A.x2+3x+2
B.3x1)(x2
C.x23x+2
D.x33x2+2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x、y的二元一次方程組 的解都為正數(shù).
(1)求a的取值范圍;
(2)化簡(jiǎn)|a+1|﹣|a﹣1|;
(3)若上述二元一次方程組的解是一個(gè)等腰三角形的一條腰和一條底邊的長,且這個(gè)等腰三角形的周長為9,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,□ABCD的對(duì)角線相交于點(diǎn)O,將線段OD繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)D的對(duì)應(yīng)點(diǎn)落在BC延長線上的點(diǎn)E處,OECDH,連接DE

(1)求證:DEBC

(2)若OECD,求證:2CE·OECD·DE;

(3)若OECDBC=3,CE=1,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABO中,∠ABO=90°,OB邊在x軸上,將△ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBD.若點(diǎn)A的坐標(biāo)為(﹣2,2 ),則點(diǎn)C的坐標(biāo)為( )

A.( ,1)
B.(1,
C.(1,2)
D.(2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,BE與CD相交于點(diǎn)G,且OE=OD.
(1)求證:OP=OG;
(2)若設(shè)AP為x,試求CG(用含x的代數(shù)式表示);
(3)求AP的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案