如圖,⊙C過(guò)原點(diǎn),且與兩坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,3),M是第三象限內(nèi)
OB
上一點(diǎn),∠BMO=120°,則⊙C的半徑長(zhǎng)為(  )
A.6B.5C.3D.3
2

∵四邊形ABMO是圓內(nèi)接四邊形,∠BMO=120°,
∴∠BAO=60°,
∵AB是⊙C的直徑,
∴∠AOB=90°,
∴∠ABO=90°-∠BAO=90°-60°=30°,
∵點(diǎn)A的坐標(biāo)為(0,3),
∴OA=3,
∴AB=2OA=6,
∴⊙C的半徑長(zhǎng)=
AB
2
=3.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)正方形和一個(gè)正六邊形的外接圓半徑相等,則此正方形與正六邊形的面積之比為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正多邊形的邊長(zhǎng)為2,中心到邊的距離為
3
,則這個(gè)正多邊形的邊數(shù)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△PQR是⊙O的內(nèi)接正三角形,四邊形ABCD是⊙O的內(nèi)接正方形,BCQR,
則∠AOQ=(  )
A.60°B.65°C.72°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正六邊形ABCDEF的邊長(zhǎng)為1cm,則圖中陰影部分的面積為_(kāi)_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面上,七個(gè)邊長(zhǎng)為1的等邊三角形,分別用①至⑦表示(如圖).從④⑤⑥⑦組成的圖形中,取出一個(gè)三角形,使剩下的圖形經(jīng)過(guò)一次平移,與①②③組成的圖形拼成一個(gè)正六邊形
(1)你取出的是哪個(gè)三角形?寫(xiě)出平移的方向和平移的距離;
(2)將取出的三角形任意放置在拼成的正六邊形所在平面,問(wèn):正六邊形沒(méi)有被三角形蓋住的面積能否等于
5
2
?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀材料:如圖,△ABC中,AB=AC,P為底邊BC上任意一點(diǎn),點(diǎn)P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ABP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AB•h,∴r1+r2=h
(1)理解與應(yīng)用
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點(diǎn)”放寬為“在三角形內(nèi)任一點(diǎn)”,即:已知邊長(zhǎng)為2的等邊△ABC內(nèi)任意一點(diǎn)P到各邊的距離分別為r1,r2,r3,試證明:r1+r2+r3=
3

(2)類(lèi)比與推理
邊長(zhǎng)為2的正方形內(nèi)任意一點(diǎn)到各邊的距離的和等于______;
(3)拓展與延伸
若邊長(zhǎng)為2的正n邊形A1A2…An內(nèi)部任意一點(diǎn)P到各邊的距離為r1,r2,…rn,請(qǐng)問(wèn)r1+r2+…rn是否為定值(用含n的式子表示),如果是,請(qǐng)合理猜測(cè)出這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,圖2…、圖m是邊長(zhǎng)均大于2的三角形、四邊形、…、凸n邊形.分別以它們的各頂點(diǎn)為圓心,以1為半徑畫(huà)弧與兩鄰邊相交,得到3條弧、4條弧…、n條。

(1)圖1中3條弧的弧長(zhǎng)的和為_(kāi)_____,圖2中4條弧的弧長(zhǎng)的和為_(kāi)_____;
(2)求圖m中n條弧的弧長(zhǎng)的和(用n表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用半徑為30cm,圓心角為120°的扇形圍成一個(gè)圓錐的側(cè)面,則圓錐的底面半徑為( 。
A.10cmB.30cmC.45cmD.300cm

查看答案和解析>>

同步練習(xí)冊(cè)答案