【題目】閱讀與思考:

閱讀理解問題——代數(shù)問題幾何化 1.閱讀理解以下文字: 我們知道,多項式的因式分解就是將一個多項式化成幾個整 式的積的形式.通過因式分解,我們常常將一個次數(shù)比較高 的多項式轉(zhuǎn)化成幾個次數(shù)較低的整式的積,來達(dá)到降次化簡 的目的.這個思想可以引領(lǐng)我們解決很多相對復(fù)雜的代數(shù)問 題.

例如:方程 2x2+3x=0 就可以這樣來解:

解:原方程可化為 x2x+3=0,

所以x=0 或者 2x+3=0

解方程 2x+3=0,得 x=- ∴原方程的解為 x=0x=- .

根據(jù)你的理解,結(jié)合所學(xué)知識,解決以下問題:

1)解方程:3x2-x=0

2)解方程:(x+32-4x2=0;

3)已知ABC 的三邊長為 4x,y,請你判斷代數(shù)式y2 -8y+16-x2的值的符號.

【答案】1x1=0,x2=2x1=-1,x2=33)符號為負(fù).

【解析】

1)根據(jù)因式分解即可求解(2)先用公式法因式分解即可求解;(3)先把y2 -8y+16-x2進(jìn)行因式分解再利用三角形的三邊關(guān)系進(jìn)行求解.

1)解方程:3x2-x=0

x(3x-1)=0

所以x=0 或者 3x-1=0

x1=0,x2=

2)解方程:(x+32-4x2=0

[x+3+2x][x+3-2x]=0

(3x+3)(-x+3)=0,

3x+3=0-x+3=0

x1=-1,x2=3

3y2 -8y+16-x2= (y-4)2 -x2=(y-4+x)(y-4-x)

4,x,y,分別為△ABC 的三邊長,

x+y-40,y-4-x0,

(y-4+x)(y-4-x)0,

∴代數(shù)式y2 -8y+16-x2的值的符號為負(fù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CD平分∠ACB,∠1=2

1)求證:DEAC;

2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BE是線段AB的延長線,且∠CBE=∠A=∠C.

(1)由∠CBE=∠A可以判斷_________,根據(jù)是_____________

(2)由∠CBE=∠C可以判斷_________,根據(jù)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將△ABC紙片沿DE折疊,使點C落在四邊形ABDE內(nèi)點C的位置,

1)①若,則

②若,則

③探索 、之間的數(shù)量關(guān)系,并說明理由;

2)直接按照所得結(jié)論,填空:

①如圖中,將△ABC紙片再沿FG、MN折疊,使點A、B分別落在△ABC內(nèi)點AB的位置,則 ;

②如圖中,將四邊形ABCD按照上面方式折疊,則 ;

③若將n邊形也按照上面方式折疊,則 ;

3)如圖,將△ABC紙片沿DE折疊,使點落在△ABC上方點的位置, 探索、之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某山的山頂B處有一個觀光塔,已知該山的山坡面與水平面的夾角∠BDC為30°,山高BC為100米,點E距山腳D處150米,在點E處測得觀光塔頂端A的仰角為60°,則觀光塔AB的高度是( )

A.50米
B.100米
C.125米
D.150米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB兩地相距50千米,甲于某日下午1時騎自行車從A地出發(fā)駛往B地,乙也于同日下午騎摩托車從A地出發(fā)駛往B地,圖中PQR和線段MN,分別表示甲和乙所行駛的S與該日下午時間t之間的關(guān)系,試根據(jù)圖形回答:
1)甲出發(fā)幾小時,乙才開始出發(fā)?
2)乙行駛多少分鐘趕上甲,這時兩人離B地還有多少千米?
3)甲從下午2時到5時的速度是多少?
4)乙行駛的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程組:

(1)

(2);

(3) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國邊防局接到情報,近海處有一可疑船只正向公海方向航行,邊防部迅速派出快艇追趕如圖1,圖2分別表示兩船相對海岸的距離(海里)與追趕時間(分)之間的關(guān)系.

根據(jù)圖象回答問題:

(1)哪條線表示到海岸的距離與追趕時間之間的關(guān)系?

(2)哪個速度快?

(3)15分鐘內(nèi)能否追上?為什么?

(4)如果一直追下去,那么能否追上

(5)當(dāng)逃離海岸12海里時,將無法對其進(jìn)行檢查,照此速度,能否在逃入公海前將其攔截?為什么?

(6)對應(yīng)的兩個一次函數(shù)中,的實際意義各是什么?可疑船只與快艇的速度各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7張如圖的長為,寬為的小長方形紙片,按如圖的方式不重疊地放在矩形內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為,當(dāng)的長度變化時,則滿足(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案