24、已知:如圖,直線l1∥l2,AB⊥l1垂足為O,BC與l2相交于點D,∠1=43°,求∠2的度數(shù).
分析:延長AB交l2于點E,如下圖,因為∠2是∠DBE的外角,根據(jù)三角形的外角性質(zhì)求出∠2即可.
或過點B作BF∥l1,利用平行線的性質(zhì)求出∠2的度數(shù).
解答:解:解法一:延長AB交l2于點E.∵AB⊥l1,l1∥l2,∴AB⊥l2
∵∠2是△BED的外角,∴∠2=90°+∠1=90°+43°=133°.
解法二:過點B作BF∥l1,利用平行線的性質(zhì)求出∠2的度數(shù).
∵l1∥l2,∴BF∥l2,
∴∠ABF=180°-90°=90°,∠FBC=∠1=43°,
∴∠2=∠ABF+∠FBC=90°+43°=133°.
點評:熟練掌握平行線的性質(zhì)及三角形外角的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南潯區(qū)一模)已知:如圖,直線l1:y=ax+2b與直線l2:y=cx+2d的交點坐標為(2,3),則a+b+c+d的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用反證法證明(填空):
兩條直線被第三條直線所截.如果同旁內(nèi)角互補,那么這兩條直線平行.
已知:如圖,直線l1,l2被l3所截,∠1+∠2=180°.
求證:l1
l2
證明:假設(shè)l1
不平行
不平行
l2,即l1與l2交與相交于一點P.
則∠1+∠2+∠P
=
=
180°
(三角形內(nèi)角和定理)
(三角形內(nèi)角和定理)

所以∠1+∠2
180°,這與
已知
已知
矛盾,故
假設(shè)
假設(shè)
不成立.
所以
l1∥l2
l1∥l2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直線l1與y軸交點坐標為(0,-1),直線l2與x軸交點坐標為(3,0),兩直線交點為P(1,1),解答下面問題:
(1)求出直線l1的解析式;
(2)請列出一個二元一次方程組,要求能夠根據(jù)圖象所提供的信息條件直接得到該方程組的解為
x=1
y=1
;
(3)當x為何值時,l1、l2表示的兩個一次函數(shù)的函數(shù)值都大于0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直線l1,l2,l3表示三條相互交叉的公路,現(xiàn)要建一個塔臺,若要求它到三條公路的距離都相等,試問:
(1)可選擇的地點有幾處?
(2)你能畫出塔臺的位置嗎?

查看答案和解析>>

同步練習(xí)冊答案