【題目】如圖,一塊四邊形的紙板剪去△DEC,得到四邊形ABCE,測得∠BAE =∠BCE=90°,BC=CE,AB=DE.
(1)能否在四邊形紙板上只剪一刀,使剪下的三角形與△DEC全等?請說明理由;
(2)求∠D的度數(shù).
【答案】(1)見解析(2)45°.
【解析】
(1)連接AC, 利用全等三角形的判定方法(SAS)進而判斷得出答案.
(2)由第(1)△ABC≌△DEC,可得AC=DC, ∠ACB=∠DCE,根據(jù)∠BCE=90°, ∠ACB+∠ACE=∠BCE, ∠ACB=∠DCE,∠DCE+∠ACE=∠ACB+∠ACE=∠BCE=90°,
可得∠ACD=90°,繼而可得△ADC是等腰直角三角形.
沿AC剪一刀.
理由:∵∠BAE=∠BCE=90°,
∴∠ABC+∠AEC=180°,
∵∠AEC+∠DEC=180°,
∴∠DEC=∠B,
在△ABC和△DEC中,
AB=DE,∠B=∠EDC, BC=EC,
∴△ABC≌△DEC(SAS).
(2)∵△ABC≌△DEC,
∴AC=DC, ∠ACB=∠DCE,
∵∠BCE=90°, ∠ACB+∠ACE=∠BCE, ∠ACB=∠DCE,
∴∠DCE+∠ACE=∠ACB+∠ACE=∠BCE=90°,
∴∠ACD=90°,
∵AC=DC,
∴∠D=45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程=1的解為負(fù)數(shù),且關(guān)于x、y的二元一次方程組的解之和為正數(shù),則下列各數(shù)都滿足上述條件a的值的是( 。
A. ,2,5 B. 0,3,5 C. 3,4,5 D. 4,5,6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),點D在BC上,AB與CE相交于點F
(1) 如圖1,直接寫出AB與CE的位置關(guān)系
(2) 如圖2,連接AD交CE于點G,在BC的延長線上截取CH=DB,射線HG交AB于K,求證:HK=BK
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊a,b,c,滿足a+b2+|c﹣6|+28=4+10b,則△ABC的外接圓半徑=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是BC邊上的高線,BM平分∠ABC交AE于點M,經(jīng)過B,M 兩點的⊙O交BC于點G,交AB于點F ,F(xiàn)B為⊙O的直徑.
(1)求證:AM是⊙O的切線
(2)當(dāng)BE=3,cosC=時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是⊙O上兩點,若四邊形ACBO是菱形,⊙O的半徑為r,則點A與點B之間的距離為( )
A. r B. r C. r D. 2r
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長線上一點,CD與⊙O相切于點E,AD⊥CD于點D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的長;
②求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com