【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點在軸的正半軸上,頂點在軸的正半軸上,是邊上的一點,,.反比例函數(shù)在第一象限內(nèi)的圖像經(jīng)過點,交于點,.
(1)求這個反比例函數(shù)的表達(dá)式,
(2)動點在矩形內(nèi),且滿足.
①若點在這個反比例函數(shù)的圖像上,求點的坐標(biāo),
②若點是平面內(nèi)一點,使得以、、、為頂點的四邊形是菱形,求點的坐標(biāo).
【答案】(1);(2)① ;②
【解析】
(1)設(shè)點B的坐標(biāo)為(m,n),則點E的坐標(biāo)為(m,n),點D的坐標(biāo)為(m6,n),利用反比例函數(shù)圖象上點的坐標(biāo)特征可求出m的值,結(jié)合OC:CD=5:3可求出n值,再將m,n的值代入k=mn中即可求出反比例函數(shù)的表達(dá)式;
(2)由三角形的面積公式、矩形的面積公式結(jié)合S△PAO=S四邊形OABC可求出點P的縱坐標(biāo).
①若點P在這個反比例函數(shù)的圖象上,利用反比例函數(shù)圖象上點的坐標(biāo)特征可求出點P的坐標(biāo);
②由點A,B的坐標(biāo)及點P的縱坐標(biāo)可得出AP≠BP,進(jìn)而可得出AB不能為對角線,設(shè)點P的坐標(biāo)為(t,4),分AP=AB和BP=AB兩種情況考慮:(i)當(dāng)AB=AP時,利用勾股定理可求出t值,進(jìn)而可得出點P1的坐標(biāo),結(jié)合P1Q1的長可求出點Q1的坐標(biāo);(ii)當(dāng)BP=AB時,利用勾股定理可求出t值,進(jìn)而可得出點P2的坐標(biāo),結(jié)合P2Q2的長可求出點Q2的坐標(biāo).綜上,此題得解.
解:(1)設(shè)點B的坐標(biāo)為(m,n),則點E的坐標(biāo)為(m,n),點D的坐標(biāo)為(m6,n).
∵點D,E在反比例函數(shù)的圖象上,
∴k=mn=(m6)n,
∴m=9.
∵OC:CD=5:3,
∴n:(m6)=5:3,
∴n=5,
∴k=mn=×9×5=15,
∴反比例函數(shù)的表達(dá)式為y=;
(2)∵S△PAO=S四邊形OABC,
∴OAyP=OAOC,
∴yP=OC=4.
①當(dāng)y=4時,=4,
解得:x=,
∴若點P在這個反比例函數(shù)的圖象上,點P的坐標(biāo)為(,4).
②由(1)可知:點A的坐標(biāo)為(9,0),點B的坐標(biāo)為(9,5),
∵yP=4,yA+yB=5,
∴y P≠,
∴AP≠BP,
∴AB不能為對角線.
設(shè)點P的坐標(biāo)為(t,4).
分AP=AB和BP=AB兩種情況考慮(如圖所示):
(i)當(dāng)AB=AP時,(9t)2+(40)2=52,
解得:t1=6,t2=12(舍去),
∴點P1的坐標(biāo)為(6,4),
又∵P1Q1=AB=5,
∴點Q1的坐標(biāo)為(6,9);
(ii)當(dāng)BP=AB時,(9t)2+(51)2=52,
解得:t3=92,t4=9+2(舍去),
∴點P2的坐標(biāo)為(92,4).
又∵P2Q2=AB=5,
∴點Q2的坐標(biāo)為(92,1).
綜上所述:點Q的坐標(biāo)為(6,9)或(92,1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)根據(jù)圖中的信息求出_______,_______;
(2)請你幫助他們將這兩個統(tǒng)計圖補全,并計算扇形統(tǒng)計圖中“支付寶”部分所對應(yīng)的圓心角的度數(shù)為_____;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生中,大約有多少人最認(rèn)可“微信”這一新生事物?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,EO⊥AB于點O,F(xiàn)O⊥CD于點O.
(1)圖中除直角外,還有其他相等的角,請寫出兩對:①______________;②______________.
(2)如果∠AOD=40°,那么:
①根據(jù)__________,可得∠BOC=________;
②求∠POF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點E是正方形ABCD內(nèi)一點,連接AE,CE.
(1)如圖1,連接,過點作于點,若,,四邊形的面積為.
①證明:;
②求線段的長.
(2)如圖2,若,,,求線段,的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E在邊AB上,AE=1,若點P為對角線BD上的一個動點,則△PAE周長的最小值是( 。
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
問題:現(xiàn)有5個邊長為1的正方形,排列形式如圖①,請把它們分割后拼接成一個新的正方形,要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.小東同學(xué)的做法是:設(shè)新正方形的邊長為x(x>0),依題意,割補前后圖形的面積相等,有x2=5,解得,由此可知新正方形的邊長等于兩個小正方形組成的矩形對角線的長,于是,畫出如圖②所示的分割線,拼出如圖③所示的新正方形.
請你參考小東同學(xué)的做法,解決如下問題:
現(xiàn)有10個邊長為1的正方形,排列形式如圖④,請把它們分割后拼接成一個新的正方形,要求:在圖④中畫出分割線,并在圖⑤的正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.(說明:直接畫出圖形,不要求寫分析過程.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(4,0)兩點,與y軸交于點C(0,2),點M(m,n)是拋物線上一動點,位于對稱軸的左側(cè),并且不在坐標(biāo)軸上,過點M作x軸的平行線交y軸于點Q,交拋物線于另一點E,直線BM交y軸于點F.
(1)求拋物線的解析式,并寫出其頂點坐標(biāo);
(2)當(dāng)S△MFQ:S△MEB=1:3時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用勾股定理可以在數(shù)軸上畫出表示的點,請依據(jù)以下思路完成畫圖,并保留畫圖痕跡:
第一步:(計算)嘗試滿足,使其中a,b都為正整數(shù).你取的正整數(shù)a=____,b=________;
第二步:(畫長為的線段)以第一步中你所取的正整數(shù)a,b為兩條直角邊長畫Rt△OEF,使O為原點,點E落在數(shù)軸的正半軸上, ,則斜邊OF的長即為.
請在下面的數(shù)軸上畫圖:(第二步不要求尺規(guī)作圖,不要求寫畫法)
第三步:(畫表示的點)在下面的數(shù)軸上畫出表示的點M,并描述第三步的畫圖步驟:_______________________________________________________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com