(2007•柳州)如圖所示,點O是直線AB上的點,OC平分∠AOD,∠BOD=30°,則∠AOC=    度.
【答案】分析:根據(jù)圖示,求出∠AOD的度數(shù),然后利用角平分線的性質(zhì),求出∠AOC的度數(shù).
解答:解:∵∠BOD=30°,
∴∠AOD=180°-∠BOD=180°-30°=150°,
∵OC平分∠AOD,
∴∠AOC=∠AOD=75°.
故答案為75°.
點評:此題考查角的運算,運用了平角和角平分線的定義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•柳州)如圖所示,在平面直角坐標系中,拋物線y=-x2+bx+c的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于C點.
(1)試判斷b與c的積是正數(shù)還是負數(shù),為什么?
(2)如果AB=4,且當拋物線y=-x2+bx+c的圖象向左平移一個單位時,其頂點在y軸上.
①求原拋物線的表達式;
②設(shè)P是線段OB上的一個動點,過點P作PE⊥x軸交原拋物線于E點.問:是否存在P點,使直線BC把△PCE分成面積之比為3:1的兩部分?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣西柳州市中考數(shù)學試卷(解析版) 題型:解答題

(2007•柳州)如圖所示,在平面直角坐標系中,拋物線y=-x2+bx+c的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于C點.
(1)試判斷b與c的積是正數(shù)還是負數(shù),為什么?
(2)如果AB=4,且當拋物線y=-x2+bx+c的圖象向左平移一個單位時,其頂點在y軸上.
①求原拋物線的表達式;
②設(shè)P是線段OB上的一個動點,過點P作PE⊥x軸交原拋物線于E點.問:是否存在P點,使直線BC把△PCE分成面積之比為3:1的兩部分?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣西北海市中考數(shù)學試卷(解析版) 題型:解答題

(2007•柳州)如圖所示,在平面直角坐標系中,拋物線y=-x2+bx+c的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于C點.
(1)試判斷b與c的積是正數(shù)還是負數(shù),為什么?
(2)如果AB=4,且當拋物線y=-x2+bx+c的圖象向左平移一個單位時,其頂點在y軸上.
①求原拋物線的表達式;
②設(shè)P是線段OB上的一個動點,過點P作PE⊥x軸交原拋物線于E點.問:是否存在P點,使直線BC把△PCE分成面積之比為3:1的兩部分?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣西北海市中考數(shù)學試卷(解析版) 題型:選擇題

(2007•柳州)如圖所示的一塊長方體木頭,想象沿虛線所示位置截下去所得到的截面圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣西北海市中考數(shù)學試卷(解析版) 題型:填空題

(2007•柳州)如圖所示,甲、乙、丙、丁四個長方形拼成正方形EFGH,中間陰影為正方形.已知甲、乙、丙、丁四個長方形面積的和是32cm2,四邊形ABCD的面積是20cm2,則甲、乙、丙、丁四個長方形周長的總和為    cm.

查看答案和解析>>

同步練習冊答案