【題目】如圖,平面直角坐標(biāo)系中,A8,0),B0,6),∠BAO,∠ABO的平分線相交于點(diǎn)C,過點(diǎn)CCDx軸交AB于點(diǎn)D,則點(diǎn)D的坐標(biāo)為( 。

A. ,2B. ,1C. 2D.,1

【答案】A

【解析】

延長DCy軸于F,過CCGOAGCEABE,根據(jù)角平分線的性質(zhì)得到FCCGCE,求得DHCGCF,設(shè)DH3x,AH4x,根據(jù)勾股定理得到AD5x,根據(jù)平行線的性質(zhì)得到∠DCA=∠CAG,求得∠DCA=∠DAC,得到CDHGAD5x,列方程即可得到結(jié)論.

解:延長DCy軸于F,過CCGOAG,CEABE,

CDx軸,

DFOB,

∵∠BAOABO的平分線相交于點(diǎn)C,

FCCGCE,

DHCGCF,

A80),B06),

OA8OB6,

∴tan∠OAB,

設(shè)DH3x,AH4x,

AD5x,

CDOA,

∴∠DCACAG,

∵∠DACGAC,

∴∠DCADAC

CDHGAD5x,

∴3x+5x+4x8,

x

DH2,OH,

D,2),

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)時(shí)代,新興詞匯層出不窮.為了解大眾對網(wǎng)絡(luò)詞匯的理解,某興趣小組舉行了一個(gè)我是路人甲的調(diào)查活動:選取四個(gè)熱詞A硬核人生,B好嗨哦,C雙擊666”D杠精時(shí)代在街道上對流動人群進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位只能勾選一個(gè)最熟悉的熱詞,根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名路人.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形圖中的b=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表

分組

頻數(shù)

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

請根據(jù)圖表中所提供的信息,完成下列問題:

(1)表中a=   ,b=   ,樣本成績的中位數(shù)落在   范圍內(nèi);

(2)請把頻數(shù)分布直方圖補(bǔ)充完整;

(3)該校九年級共有1000名學(xué)生,估計(jì)該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),對稱軸與軸交于點(diǎn)(3,0),且

1)求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);

2)將拋物線平移,得到的新拋物線的頂點(diǎn)為(0,﹣1),拋物線的對稱軸與兩條拋物線圍成的封閉圖形為.直線經(jīng)過點(diǎn).若直線與圖形有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇BA、B相距20海里,這時(shí)在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時(shí)的速度前往救援,問巡邏艇能否在1小時(shí)內(nèi)到達(dá)漁船C處?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)B在直線l上,過點(diǎn)B構(gòu)建等腰直角三角形ABC,使∠BAC90°,且ABAC,過點(diǎn)CCD⊥直線l于點(diǎn)D,連接AD

1)小亮在研究這個(gè)圖形時(shí)發(fā)現(xiàn),∠BAC=∠BDC90°,點(diǎn)AD應(yīng)該在以BC為直徑的圓上,則∠ADB的度數(shù)為   °,將射線AD順時(shí)針旋轉(zhuǎn)90°交直線l于點(diǎn)E,可求出線段ADBD,CD的數(shù)量關(guān)系為   ;

2)小亮將等腰直角三角形ABC繞點(diǎn)B在平面內(nèi)旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到圖2位置時(shí),線段AD,BD,CD的數(shù)量關(guān)系是否變化,請說明理由;

3)在旋轉(zhuǎn)過程中,若CD長為1,當(dāng)ABD面積取得最大值時(shí),請直接寫AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測區(qū),其中點(diǎn)C、D為監(jiān)測點(diǎn),已知點(diǎn)C、D、B在同一直線上,且ACBC,CD400米,tanADC2,∠ABC35°

1)求道路AB段的長(結(jié)果精確到1米)

2)如果道路AB的限速為60千米/時(shí),一輛汽車通過AB段的時(shí)間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為⊙O的弦,過點(diǎn)OAB的平行線,交⊙O于點(diǎn)C,直線OC上一點(diǎn)D滿足∠D=∠ACB

1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若⊙O的半徑等于4tanACB,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸正半軸交于點(diǎn),

1)如圖1,求的值;

2)如圖2,拋物線的頂點(diǎn)坐標(biāo)是,點(diǎn)是第一象限拋物線上的一點(diǎn),連接交拋物線的對稱軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)是,線段的長為,求的函數(shù)關(guān)系式;

3)如圖3,在(2)的條件下,當(dāng)時(shí),過點(diǎn)軸交拋物線于點(diǎn),點(diǎn)軸下方拋物線上的一個(gè)動點(diǎn),連接軸于點(diǎn),直線經(jīng)過點(diǎn)于點(diǎn),連接,過點(diǎn)于點(diǎn),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案