解:(1)∠BFG=∠BGF;理由如下:
連OD,
∵OD=OF(⊙O的半徑),
∴∠ODF=∠OFD;
∵⊙O與AC相切于點D,∴OD⊥AC;
又∵∠C=90°,即GC⊥AC,∴OD∥GC,
∴∠BGF=∠ODF;
又∵∠BFG=∠OFD,
∴∠BFG=∠BGF.
(2)連OE,
∵⊙O與AC相切于點D、與BC相切于點E,
∴DC=CE,OD⊥AC,OE⊥BC,
∵∠C=90°,
∴四邊形ODCE為正方形,
∵AO=BO=
AB=
=3
,
∴OD=
BC=
×6=3,
∵∠BFG=∠BGF,
∴BG=BF=OB-OF=3
-3;
從而CG=CB+BG=3+3
;
∴S
陰影=S
△DCG-S
正方形ODCE+S
扇形ODE
=S
△DCG-(S
正方形ODCE-S
扇形ODE)
=
•3•(3+3
)-(3
2-
π•3
2)
=
.
分析:(1)連接OD.根據(jù)切線的性質(zhì)得到OD⊥AC,則OD∥BC;可得∠ODF=∠G,再結(jié)合對頂角相等和等邊對等角得到∠BFG=∠BGF.
(2)陰影部分的面積=直角三角形CDG的面積-(正方形的面積-扇形ODE的面積).根據(jù)等腰直角三角形的性質(zhì)可求出有關(guān)邊AB、OD的長,以及圓心角∠DOE的度數(shù).進而可根據(jù)扇形的面積和直角三角形的面積求得陰影部分的面積.
點評:此題綜合考查了切線的性質(zhì)、平行線的性質(zhì)、等腰直角三角形的性質(zhì)及扇形的面積計算方法.