將矩形紙片ABCD,按如圖所示的方式折疊,點A、點C恰好落在對角線BD
上,得到菱形BEDF.若BC=6,則AB的長為    ▲    .
。
翻折變換(折疊問題),折疊的性質,菱形和矩形的性質,勾股定理。
【分析】設BD與EF交于點O。
∵四邊形BEDF是菱形,∴OB=OD=BD。
∵四邊形ABCD是矩形,∴∠C=90°。
設CD=x,根據(jù)折疊的性質得:OB="OD=" CD=x,即BD=2x,
在Rt△BCD中,BC2+CD2=BD2,即62+x2=(2x)2,解得:x=。
∴AB=CD=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,等邊三角形AEF的頂點E、F分別在BC和CD上.
(1)求證:CE=CF;
(2)若等邊三角形AEF的邊長為2,求正方形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,EB= ,折疊后,點C落在AD邊上的C1處,并且點B落在EC1邊上的B1處.則BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,ADBC,∠BAD=90°,CEAD于點EAD=4cm,BC=2cm,AB=3cm.從初始時刻開始,動點PQ分別從點A、B同時出發(fā),運動速度均為1 cm/s,動點P沿ABCE的方向運動,到點E停止;動點Q沿BCED的方向運動,到點D停止.設運動時間為s,PAQ的面積為y cm2.(這里規(guī)定:線段是面積為0的三角形)解答下列問題:

(1)當x=" 2" s時,y=________cm2;當= s時,y=________cm2;
(2)當動點P在線段BC上運動,即3 ≤ x ≤ 5時,求y之間的函數(shù)關系式,并求出的值;
(3)當動點P在線段CE上運動,即5 < x ≤ 8 時,求y之間的函數(shù)關系式;
(4)直接寫出在整個運動過程中,使PQ與四邊形ABCE的對角線平行的所有x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

ABCD中,E,F(xiàn)分別是BC、AD上的點,且BE=DF.求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一個多邊形的每個外角都等于45°,則這個多邊形是__________邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,D是△ABC內(nèi)一點,BDCD,AD=6,BD=4,CD=3,E、FG、H分別是ABAC、CDBD的中點,則四邊形EFGH的周長是( ▲ ).
A.7B.9C.10D.11

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知菱形的面積為24cm2,一條對角線長8cm,則此菱形的另一條對角線長為     cm.

查看答案和解析>>

同步練習冊答案