【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
【答案】(1)-2;(2)2.
【解析】
(1)利用判別式的意義得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范圍,再在此范圍內(nèi)找出最小整數(shù)值即可;
(2)利用根與系數(shù)的關(guān)系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接著解關(guān)于m的方程,然后利用(1)中m的范圍確定m的值.
解:(1)根據(jù)題意得△=(2m+1)2﹣4(m2﹣2)≥0,
解得m≥﹣,
所以m的最小整數(shù)值為﹣2;
(2)根據(jù)題意得x1+x2=﹣(2m+1),x1x2=m2﹣2,
∵(x1﹣x2)2+m2=21,
∴(x1+x2)2﹣4x1x2+m2=21,
∴(2m+1)2﹣4(m2﹣2)+m2=21,
整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,
∵m≥﹣,
∴m的值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線與軸的正半軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)與點(diǎn),點(diǎn)在第三象限內(nèi),且,.
(1)當(dāng)時(shí),求拋物線的表達(dá)式;
(2)設(shè)點(diǎn)坐標(biāo)為,試用分別表示;
(3)記,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).的頂點(diǎn)在格點(diǎn)上,僅用無(wú)刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實(shí)線表示,按步驟完成下列問題:
(1)將邊繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段;
(2)畫邊的中點(diǎn);
(3)連接并延長(zhǎng)交于點(diǎn),直接寫出的值;
(4)在上畫點(diǎn),連接,使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情過后,為了促進(jìn)消費(fèi),某商場(chǎng)設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有四個(gè)相同的小球,球上分別標(biāo)有“10元”、“20元”、“30元”和“40元”的字樣,規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿500元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回)。商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)500元.
(1)該順客最多可得到______元購(gòu)物券;
(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于60元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的頂點(diǎn)、在軸上(在的左側(cè)),頂點(diǎn)、在軸上方,對(duì)角線的長(zhǎng)是,點(diǎn)為的中點(diǎn),點(diǎn)在菱形的邊上運(yùn)動(dòng).當(dāng)點(diǎn)到所在直線的距離取得最大值時(shí),點(diǎn)恰好落在的中點(diǎn)處,則菱形的邊長(zhǎng)等于( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,CD⊥AB于點(diǎn)D,BE平分∠ABC,且BE⊥AC于點(diǎn)E,與CD交于F,H是BC邊的中點(diǎn),連接DH與BE交于點(diǎn)G,則下列結(jié)論:
①BF=AC;②∠A=∠DGE;③CE<BG;④S△ADC=S四邊形CEGH;⑤DGAE=DCEF中,正確結(jié)論的個(gè)數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的圖象,經(jīng)過點(diǎn)A(1,0),B(3,0),C(0,3)三點(diǎn),過點(diǎn)C,D(﹣3,0)的直線與拋物線的另一交點(diǎn)為E.
(1)請(qǐng)你直接寫出:
①拋物線的解析式 ;
②直線CD的解析式 ;
③點(diǎn)E的坐標(biāo)( , );
(2)如圖1,若點(diǎn)P是x軸上一動(dòng)點(diǎn),連接PC,PE,則當(dāng)點(diǎn)P位于何處時(shí),可使得∠CPE=45°,請(qǐng)你求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)Q是拋物線上一動(dòng)點(diǎn),作QH⊥x軸于H,連接QA,QB,當(dāng)QB平分∠AQH時(shí),請(qǐng)你直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把△PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,過點(diǎn)B作BE⊥CG,垂足為E且在AD上,BE交PC于點(diǎn)F.
(1)如圖1,若點(diǎn)E是AD的中點(diǎn),求證:△AEB≌△DEC;
(2)如圖2,①求證:BP=BF;
②當(dāng)AD=25,且AE<DE時(shí),求cos∠PCB的值;
③當(dāng)BP=9時(shí),求BEEF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)一次函數(shù)y=ax+b(a,b是常數(shù),且a≠0)的圖象A(1,3)和B(-1,-1)兩點(diǎn).
(1)求該一次函數(shù)的表達(dá)式.
(2)①若點(diǎn)( ,2)在(1)中的函數(shù)圖象上,求m的值.
②若(1)中的函數(shù)圖象和y=-2x+n的函數(shù)圖象的交點(diǎn)在第一象限,求n的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com