【題目】如圖,已知拋物線(a≠0)經過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數關系式;
(2)設點P是直線l上的一個動點,當點P到點A、點B的距離之和最短時,求點P的坐標;
(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標.
【答案】(1);(2)P(1,0);(3).
【解析】
試題(1)直接將A、B、C三點坐標代入拋物線的解析式中求出待定系數即可;
(2)由圖知:A.B點關于拋物線的對稱軸對稱,那么根據拋物線的對稱性以及兩點之間線段最短可知,直線l與x軸的交點,即為符合條件的P點;
(3)由于△MAC的腰和底沒有明確,因此要分三種情況來討論:①MA=AC、②MA=MC、③AC=MC;可先設出M點的坐標,然后用M點縱坐標表示△MAC的三邊長,再按上面的三種情況列式求解.
試題解析:(1)將A(﹣1,0)、B(3,0)、C(0,﹣3)代入拋物線中,得:,解得:,故拋物線的解析式:.
(2)當P點在x軸上,P,A,B三點在一條直線上時,點P到點A、點B的距離之和最短,此時x==1,故P(1,0);
(3)如圖所示:拋物線的對稱軸為:x==1,設M(1,m),已知A(﹣1,0)、C(0,﹣3),則:
=,==,=10;
①若MA=MC,則,得:=,解得:m=﹣1;
②若MA=AC,則,得:=10,得:m=;
③若MC=AC,則,得:=10,得:,;
當m=﹣6時,M、A、C三點共線,構不成三角形,不合題意,故舍去;
綜上可知,符合條件的M點,且坐標為 M(1,)(1,)(1,﹣1)(1,0).
科目:初中數學 來源: 題型:
【題目】為了解家長對“學生在校帶手機”現象的看法,某校“九年級興趣小組”隨機調查了該校學生家長若干名,并對調查結果進行整理,繪制如下不完整的統(tǒng)計圖:
請根據以上信息,解答下列問題
(1)這次接受調查的家長總人數為________人;
(2)在扇形統(tǒng)計圖中,求“很贊同”所對應的扇形圓心角的度數;
(3)若在這次接受調查的家長中,隨機抽出一名家長,恰好抽到“無所謂”的家長概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 先閱讀下面的材料,再解答下面的問題:如果兩個三角形的形狀相同,則稱這兩個三角形相似.如圖1,△ABC與△DEF形狀相同,則稱△ABC與△DEF相似,記作△ABC∽△DEF.那么,如何說明兩個三角形相似呢?我們可以用“兩角分別相等的三角形相似”加以說明.用數學語言表示為:
如圖1:在△ABC與△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF.
請你利用上述定理解決下面的問題:
(1)下列說法:①有一個角為50°的兩個等腰三角形相似;②有一個角為100°的兩個等腰三角形相似;③有一個銳角相等的兩個直角三角形相似;④兩個等邊三角形相似.其中正確的是______(填序號);
(2)如圖2,已知AB∥CD,AD與BC相交于點O,試說明△ABO∽△DCO;
(3)如圖3,在平行四邊形ABCD中,E是DC上一點,連接AE.F為AE上一點,且∠BFE=∠C,求證:△ABF∽△EAD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線 與x軸交于點A(-1,0),點B(3,0),與y軸正半軸交于點C.
(1)拋物線的解析式為________;
(2)P為拋物線上一點,連結AC,PC,若∠PCO=3∠ACO,點P的坐標為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(x1,y1)、B(x2,y2)在二次函數y=x2+mx+n的圖象上,當x1=1、x2=3時,y1=y2.
(1)①求m;②若拋物線與x軸只有一個公共點,求n的值.
(2)若P(a,b1),Q(3,b2)是函數圖象上的兩點,且b1>b2,求實數a的取值范圍.
(3)若對于任意實數x1、x2都有y1+y2≥2,求n的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠MAN=120°,點C是∠MAN的平分線AQ上的一個定點,點B,D分別在AN,AM上,連接BD.
【發(fā)現】
(1)如圖1,若∠ABC=∠ADC=90°,則∠BCD= °,△CBD是 三角形;
【探索】
(2)如圖2,若∠ABC+∠ADC=180°,請判斷△CBD的形狀,并證明你的結論;
【應用】
(3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點G,H分別在射線OE,OF上,且△PGH為等邊三角形,則滿足上述條件的△PGH的個數一共有 .(只填序號)
①2個②3個③4個④4個以上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BC是⊙O的直徑,D、E是⊙O上的兩點,且弧CD=DE,連接EB、DO.
(1)求證:EB∥DO;
(2)連接EC,在∠CEB的外部作∠BEA=∠C,直線EA交CB的延長線于A,求證:直線EA是⊙O的切線;
(3)若EA=2,AB=1,求⊙O的半徑長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com