【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,邊、分別在軸、軸的正半軸上,點(diǎn)、都在函數(shù)的圖象上,過動點(diǎn)分別作軸、軸的平行線,交軸、軸于點(diǎn)、.設(shè)矩形與正方形重疊部分圖形的面積為,點(diǎn)的橫坐標(biāo)為m.
(1)求的值;
(2)用含的代數(shù)式表示的長;
(3)求與之間的函數(shù)關(guān)系式.
【答案】(1)k=4;(2)時,,當(dāng)時, ;(3)當(dāng)時,,當(dāng)時,.
【解析】
(1)根據(jù)題意可得B(2,2),代入解析式可求k的值.
(2)分點(diǎn)P在B點(diǎn)上方,和點(diǎn)P在B點(diǎn)下方討論可得
(3)根據(jù)重疊部分圖形是矩形,面積=長和寬,可得S與m之間的函數(shù)關(guān)系式.
解(1)∵正方形的面積4,
∴.
∴點(diǎn).
∵點(diǎn)、都在函數(shù)的圖象上,
∴,
∴解析式.
(2)∵點(diǎn)在的圖象上,且橫坐標(biāo)為,
∴.
當(dāng)時,,當(dāng)時,.
(3)當(dāng)時,,當(dāng)時,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量箱與銷售價元/箱之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A為雙曲線y=(k≠0)上一點(diǎn),B為x軸上一點(diǎn),且△AOB為等邊三角形,△AOB的邊長為2,則k的值為( 。
A. 2 B. ±2 C. D. ±
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24 m,平行于墻的邊的費(fèi)用為200元/m,垂直于墻的邊的費(fèi)用為150元/m,設(shè)平行于墻的邊長為x m.
(1)設(shè)垂直于墻的一邊長為y m,直接寫出y與x之間的函數(shù)關(guān)系式;
(2)若菜園面積為384 m2,求x的值;
(3)求菜園的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c過點(diǎn)A(2,0)和B(3,3).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)M在第二象限的拋物線上,且∠MBO=∠ABO.
①直線BM交x軸于點(diǎn)N,求線段ON的長;
②延長BO交拋物線于點(diǎn)C,點(diǎn)P是平面內(nèi)一點(diǎn),連接PC、OP,當(dāng)△POC∽△MOB時,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若 二 次 函 數(shù) y ax bx c 的 圖 象 與 x 軸 交 于 A 和 B 兩 點(diǎn) , 頂 點(diǎn) 為 C , 且b 4ac 4 ,則 ACB 的度數(shù)為()
A. 120° B. 90° C. 60° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明同學(xué)設(shè)計的“過圓外一點(diǎn)作圓的切線”的尺規(guī)作圖的過程.
已知:如圖1,和外的一點(diǎn)求作:過點(diǎn)P作的切線.
作法:如圖2,
連接OP;
作線段OP的垂直平分線MN,直線MN交OP于C;
以點(diǎn)C為圓心,CO為半徑作圓,交于點(diǎn)A和B;
作直線PA和則PA,PB就是所求作的的切線.
根據(jù)上述作圖過程,回答問題:
用直尺和圓規(guī),補(bǔ)全圖2中的圖形;
完成下面的證明:證明:連接OA,OB,
由作圖可知OP是的直徑,
,
,,圖2
又和OB是的半徑,
,PB就是的切線______填依據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,,為高線,點(diǎn)在邊上,且,連接,,與邊相交于點(diǎn).
(1)如圖1,當(dāng)時,求證:
(2)如圖2,當(dāng)時,則線段、的數(shù)量關(guān)系為 ;
(3)如圖3,在(2)的條件下,將繞點(diǎn)順時針旋轉(zhuǎn),旋轉(zhuǎn)后邊所在的直線與邊相交于點(diǎn),邊所在的直線與邊相交于點(diǎn),與高線相交于點(diǎn),若,且,求線段H的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)P(不與點(diǎn)A,B重合)為半圓上一點(diǎn),將圖形沿BP折疊,分別得到點(diǎn)A,O的對應(yīng)點(diǎn)點(diǎn)A′,O′,過點(diǎn)A′C∥AB,若A′C與半圓O恰好相切,則∠ABP的大小為_____°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com