Rt△ABC中,CD是斜邊AB上的高,∠B=30°,AD=2cm,則AB的長度是( )
A.2cm
B.4cm
C.8cm
D.16cm
【答案】分析:在Rt△ABC中,CD是斜邊AB上的高,可以得到∠B+∠A=∠DCA+∠A=90°,由此可以推出∠DCA=∠B=30°,然后利用30°所對的直角邊等于斜邊的一半分別求出AC,AB.
解答:解:在Rt△ABC中,CD是斜邊AB上的高
∴∠B+∠A=∠DCA+∠A=90°
∴∠DCA=∠B=30°
∴AC=2AD=4,
∴AB=2AC=8cm.
故選C.
點評:本題主要利用了30°所對的直角邊等于斜邊的一半和同角的余角相等解決問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,CD是斜邊AB上的中線,已知CD=2,AC=3,則sinB的值是( 。
A、
2
3
B、
3
2
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

3、Rt△ABC中,CD是斜邊AB上的高,DE⊥AC于E,AC:CB=5:4,則AE:EC=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、已知Rt△ABC中,CD⊥AB于D,且AD=3,AC=6.則AB=
12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、如圖,在Rt△ABC中,CD是斜邊AB上的中線,DF⊥AB,交AC于E,交BC的延長線于點F.
(1)求證:∠A=∠F;
(2)△CDE與△FDC是否相似?并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,CD是斜邊AB上的高,若∠A=30°,BD=1cm,則AD=
3
3
cm.

查看答案和解析>>

同步練習冊答案