【題目】足球訓練中,為了訓練球員快速搶斷轉身,教練設計了折返跑訓練.教練在東西方向的足球場上畫了一條直線插上不同的折返旗幟,如果約定向西為正,向東為負,練習一組的行駛記錄如下(單位:米):+40-30,+50,-25,+25,-30,+15,-28+16-20.

1)球員最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?

2)球員訓練過程中,最遠處離出發(fā)點多遠?

3)球員在一組練習過程中,跑了多少米?

【答案】1)球員最后到達的地方在出發(fā)點的正西方向,距出發(fā)點13米;(2)在最遠處離出發(fā)點;(3279

【解析】

(1)根據(jù)加法法則,將正數(shù)與正數(shù)相加,負數(shù)與負數(shù)相加,進而得出計算得結果;
(2)求出每一段到出發(fā)點的距離,即可判斷出結果;
(3)利用絕對值的性質以及有理數(shù)加法法則求出即可.

解:(1)();

答:球員最后到達的地方在出發(fā)點的正西方向,距出發(fā)點13米;

(2)每段路程跑完距離出發(fā)點為:

第一段,,

第二段,

第三段,,

第四段,

第五段,,

第六段,,

第七段,,

第八段,,

第九段,,

第十段,,

∴在最遠處離出發(fā)點;

(3) (),

答:球員在一組練習過程中,跑了279.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,∠OAB=90°,OA=AB=6,將繞點O沿逆時針方向旋轉90°得到.

(1)線段的長是

(2)的度數(shù)是 ;

(3)求四邊形的面積的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們經濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛入.如圖,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學舉辦校園好聲音朗誦大賽,根據(jù)初賽成績,七年級和八年級各選出5名選手組成七年級代表隊和八年級代表隊參加學校決賽兩個隊各選出的5名選手的決賽成績如圖所示:

1)根據(jù)所給信息填寫表格;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

七年級

85

八年級

85

100

2)結合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)若七年級代表隊決賽成績的方差為70,計算八年級代表隊決賽成績的方差,并判斷哪個代表隊的選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平行四邊形ABCD中,E,F(xiàn)分別在邊AD,AB上,連接CE,CF,且滿足∠DCE=∠BCF,BF=DE,∠A=60°,連接EF.

(1)若EF=2,求AEF的面積;

(2)如圖2,取CE的中點P,連接DP,PF,DF,求證:DP⊥PF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D.

(1)求證:AC平分∠DAB;

(2)若CD=4,AD=8,試求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是邊長為1的正方形ABCD的對角線BD上的一點,且BE=BA,PCE上任意一點,PQBC于點Q,PRBE于點R.則:(1DE=__;(2PQ+PR=__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察如圖所示一組圖形中點的個數(shù),其中第1個圖中共有4個點,2個圖中共有10個點,3個圖中共有19個點,…按此規(guī)律第10個圖中共有點的個數(shù)是 ( )

A.109B.136C.166D.199

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應關系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時出發(fā),同時到達終點

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

同步練習冊答案