【題目】定義符號min{a,b}的含義為:當a≥b時min{a,b}=b;當a<b時min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.則min{﹣x2+1,﹣x}的最大值是(
A.
B.
C.1
D.0

【答案】A
【解析】解:在同一坐標系xOy中,畫出函數(shù)二次函數(shù)y=﹣x2+1與正比例函數(shù)y=﹣x的圖象,如圖所示.設(shè)它們交于點A、B. 令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=
∴A( , ),B( , ).
觀察圖象可知:
① 當x≤ 時,min{﹣x2+1,﹣x}=﹣x2+1,函數(shù)值隨x的增大而增大,其最大值為 ;
②當 <x< 時,min{﹣x2+1,﹣x}=﹣x,函數(shù)值隨x的增大而減小,其最大值為 ;
③當x≥ 時,min{﹣x2+1,﹣x}=﹣x2+1,函數(shù)值隨x的增大而減小,最大值為
綜上所示,min{﹣x2+1,﹣x}的最大值是
故選:A.

理解min{a,b}的含義就是取二者中的較小值,畫出函數(shù)圖象草圖,利用函數(shù)圖象的性質(zhì)可得結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)計劃把甲種貨物1240噸和乙種貨物880噸用一列貨車運往某地,已知這列貨車掛在A、B兩種不同規(guī)格的貨車廂共40節(jié),使用A型車廂每節(jié)費用為6000元,使用B型車廂每節(jié)費用為8000.

1)設(shè)運送這批貨物的總費用為y萬元,這列貨車掛A型車廂x 節(jié),試定出用車廂節(jié)數(shù)x表示總費用y的公式.

2)如果每節(jié)A型車廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時按此要求安排A、B兩種車廂的節(jié)數(shù),那么共有哪幾種安排車廂的方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點,與反比例函數(shù) 的圖象相交于C,D兩點,分別過C,D兩點作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列四個結(jié)論:
①△CEF與△DEF的面積相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正確的結(jié)論是( )

A.①②
B.①②③
C.①②③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)、外語、語文及其他學(xué)科中,某校七年級開展了“同學(xué)們最喜歡哪門學(xué)科”的調(diào)查(該校七年級共有200人,每人只能選一項).

(1)調(diào)查的問題是什么?調(diào)查的對象是誰?

(2)在被調(diào)查的200名學(xué)生中,有40人最喜歡語文,60人最喜歡數(shù)學(xué),80人最喜歡外語,其余的人選擇其他.請把七年級的學(xué)生最喜歡某學(xué)科的人數(shù)及其占學(xué)生總數(shù)的百分比填入下表:

語文

外語

數(shù)學(xué)

其他

人數(shù)

占學(xué)生總數(shù)的百分比

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,O為△ABC的三條角平分線的交點,ODBCOEAC,OFAB,點D、E、F分別是垂足,且BC8cm,CA6cm,則點O到邊AB的距離為(  )

A. 2cm B. 3cm C. 4cm D. 5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號,此時B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時又位于B船的北偏東78°方向.

(1)求∠ABC的度數(shù);
(2)A船以每小時30海里的速度前去救援,問多長時間能到出事地點.(結(jié)果精確到0.01小時).
(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是弧AB上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連結(jié)DE,點F在線段DE上,且EF=2DF,過點C的直線CG交OA的延長線于點G,且∠CGO=∠CDE.
(1)求證:CG與弧AB所在圓相切.
(2)當點C在弧AB上運動時,△CFD的三條邊是否存在長度不變的線段?若存在,求出該線段的長度;若不存在,說明理由.
(3)若∠CGD=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx-3經(jīng)過A(-1,0)、B(3,0)兩點,與y軸交于C點,

(1)求拋物線的解析式;
(2)如圖①,拋物線的對稱軸上有一點P,且點P在x軸下方,線段PB繞點P順時針旋轉(zhuǎn)90°,點B的對應(yīng)點B′恰好落在拋物線上,求點P的坐標;
(3)如圖②,直線y= x+ 交拋物線于A、E兩點,點D為線段AE上一點,連接BD,有一動點Q從B點出發(fā),沿線段BD以每秒1個單位的速度運動到D,再沿DE以每秒鐘2個單位的速度運動到E,問:是否存在點D,使點Q從點B到E的運動時間最少,若存在,請求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0),B(4,0)兩點,與y軸交于點C,且OC=3OA,點P是拋物線上的一個動點,過點P作PE⊥x軸于點E,交直線BC于點D,連接PC.

(1)試求拋物線的解析式;
(2)如圖2,當動點P只在第一象限的拋物線上運動時,過點P作PF⊥BC于點F,試問△PFD的周長是否有最大值?如果有,請求出最大值;如果沒有,請說明理由.
(3)當點P在拋物線上運動時,將△CPD沿直線CP翻折,點D的對應(yīng)點為點Q,試問,四 邊形CDPQ能否成為菱形?如果能,請求此時點P的坐標;如果不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案