精英家教網 > 初中數學 > 題目詳情
(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

【答案】分析:(1)已知了頂點C坐標,可用頂點式的二次函數通式設出這個二次函數,然后根據A點的坐標可求出二次函數的解析式.然后根據求出的二次函數的解析式,求出B點的坐標,然后可用待定系數法用B、A的坐標求出AB所在直線的解析式;
(2)要求三角形CAB的面積,根據題中給出的求三角形面積的求法,那么要先求出水平寬和鉛垂高,求鉛垂高就要求出C,D兩點縱坐標,C點的坐標已知,可用(1)中的一次函數求出D點的縱坐標,那么C,D兩點的縱坐標的差的絕對值就是三角形CAB的鉛垂高,而水平寬是A點的橫坐標,這樣可根據題中給出的求三角形的面積的方法得出三角形CAB的面積;
(3)可先根據(2)中三角形CAB的面積得出三角形PAB的面積,三角形PAB中,水平寬是A的橫坐標為定值,因此根據三角形PAB的面積可得出此時的鉛垂高,然后用拋物線的解析式以及一次函數的解析式,先表示出鉛垂高,然后根據由三角形PAB的面積求出的鉛垂高可得出關于x的方程,即可得出x的值,然后代入二次函數式中即可得出此點的坐標.
解答:解:(1)設拋物線的解析式為:y1=a(x-1)2+4
把A(3,0)代入解析式求得a=-1
所以y1=-(x-1)2+4=-x2+2x+3
設直線AB的解析式為:y2=kx+b
由y1=-x2+2x+3求得B點的坐標為(0,3)
把A(3,0),B(0,3)代入y2=kx+b中
解得:k=-1,b=3
所以y2=-x+3;

(2)因為C點坐標為(1,4)
所以當x=1時,y1=4,y2=2
所以CD=4-2=2
S△CAB=×3×2=3(平方單位);

(3)假設存在符合條件的點P,設P點的橫坐標為x,△PAB的鉛垂高為h,
則h=y1-y2=(-x2+2x+3)-(-x+3)=-x2+3x
由S△PAB=S△CAB
得:×3×(-x2+3x)=×3
化簡得:4x2-12x+9=0
解得,x=
將x=代入y1=-x2+2x+3中,
解得P點坐標為(,).
點評:本題結合三角形面積的求法考查了二次函數以及一次函數的綜合應用,讀懂題意,弄清水平寬和鉛垂高的意義是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市蕭山區(qū)中考數學模擬試卷26(義蓬一中 王芳)(解析版) 題型:解答題

(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省梅州市中考數學模擬試卷(一)(解析版) 題型:解答題

(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省廣州市南沙區(qū)中考數學一模試卷(解析版) 題型:解答題

(2009•益陽)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案