【題目】等腰三角形的兩邊長(zhǎng)分別為6cm,3cm,則該等腰三角形的周長(zhǎng)是( )
A.9cm
B.12cm
C.12cm或15cm
D.15cm

【答案】D
【解析】

題目給出等腰三角形有兩條邊長(zhǎng)為3cm和6cm,而沒有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗(yàn)證能否組成三角形.

當(dāng)腰為3cm時(shí),3+3=6,不能構(gòu)成三角形,因此這種情況不成立.
當(dāng)腰為6cm時(shí),6-3<6<6+3,能構(gòu)成三角形;
此時(shí)等腰三角形的周長(zhǎng)為6+6+3=15cm.
故答案為:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,AD是BC邊上的中線,AEBC,CEAE,垂足為E

1求證:ABD≌△CAE;

2連接DE,線段DE與AB之間有怎樣的位置和數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:70°﹣32°=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題
(1)如圖1,把△ABC沿DE折疊,使點(diǎn)A落在點(diǎn)A’處,試探索∠1+∠2與∠A的關(guān)系.(不必證明).

(2)如圖2,BI平分∠ABC,CI平分∠ACB,把△ABC折疊,使點(diǎn)A與點(diǎn)I重合,若∠1+∠2=130°,求∠BIC的度數(shù);

(3)如圖3,在銳角△ABC中,BF⊥AC于點(diǎn)F,CG⊥AB于點(diǎn)G,BF、CG交于點(diǎn)H,把△ABC折疊使點(diǎn)A和點(diǎn)H重合,試探索∠BHC與∠1+∠2的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家體育用品商店出售同樣的乒乓球拍和乒乓球,乒乓球拍每副定價(jià)20元,乒乓球每盒定價(jià)5元.現(xiàn)兩家商店搞促銷活動(dòng),甲店的優(yōu)惠辦法是:每買一副乒乓球拍贈(zèng)一盒乒乓球;乙店的優(yōu)惠辦法是:全部商品按定價(jià)的9折出售.某班需購(gòu)買乒乓球拍4副,乒乓球若干盒(不少于4盒).

(1)當(dāng)購(gòu)買乒乓球的盒數(shù)為x盒時(shí),在甲店購(gòu)買需付款 元?在乙店 購(gòu)買需付款 元?(用含x的代數(shù)式表示)

(2)當(dāng)購(gòu)買乒乓球盒數(shù)為10盒時(shí),去哪家商店購(gòu)買較合算?請(qǐng)計(jì)算說(shuō)明.

(3) 當(dāng)購(gòu)買乒乓球盒數(shù)為10盒時(shí),你能給出一種更為省錢的購(gòu)買方案嗎?試寫出你的購(gòu)買方案,并求出此時(shí)需付多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(﹣x3y)2的結(jié)果是( 。
A.﹣x5y
B.x6y
C.﹣x3y2
D.x6y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列命題:①無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù);②64的平方根是8;③過(guò)一點(diǎn)有且只有一條直線與這條直線平行;④兩條直線被第三條直線所截,同位角相等,其中正確的個(gè)數(shù)是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(其中)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸l與x軸交于點(diǎn)D,且點(diǎn)D恰好在線段BC的垂直平分線上.

(1)求拋物線的關(guān)系式;

(2)過(guò)點(diǎn)的線段MN∥y軸,與BC交于點(diǎn)P,與拋物線交于點(diǎn)N.若點(diǎn)E是直線l上一點(diǎn),且∠BED=∠MNB-∠ACO時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,EF分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DBCB的延長(zhǎng)線于G

1)求證:△ADE≌△CBF;

2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案