(2009•徐匯區(qū)二模)⊙O的直徑為10,⊙O的兩條平行弦AB=8,CD=6,那么這兩條平行弦之間的距離是   
【答案】分析:根據(jù)勾股定理可將圓心O到兩條弦的距離求出,再根據(jù)兩條弦在⊙O的同旁和兩旁,分兩種情況進(jìn)行討論.
解答:解:由勾股定理得:圓心O到弦AB的距離d1==3,
圓心O到弦CD的距離d2==4.
(1)弦AB和CD在⊙O同旁,d=d2-d1=1;
(2)弦AB和CD在⊙O兩旁,d=d2+d1=7.
故這兩條平行弦之間的距離是1或7.
點評:解決本題時應(yīng)注意分類進(jìn)行討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年上海市寶山區(qū)羅店中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•徐匯區(qū)二模)如圖,拋物線y=ax2+bx+c(a≠0)與y軸正半軸交于點C,與x軸交于點A(2,0)、B(8,0),∠OCA=∠OBC.
(1)求拋物線的解析式;
(2)在直角坐標(biāo)平面內(nèi)確定點M,使得以點M、A、B、C為頂點的四邊形是平行四邊形,請直接寫出點M的坐標(biāo);
(3)若存在一點P到點A、B、C三點的距離相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市徐匯區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•徐匯區(qū)二模)如圖,拋物線y=ax2+bx+c(a≠0)與y軸正半軸交于點C,與x軸交于點A(2,0)、B(8,0),∠OCA=∠OBC.
(1)求拋物線的解析式;
(2)在直角坐標(biāo)平面內(nèi)確定點M,使得以點M、A、B、C為頂點的四邊形是平行四邊形,請直接寫出點M的坐標(biāo);
(3)若存在一點P到點A、B、C三點的距離相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市徐匯區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2009•徐匯區(qū)二模)拋物線y=(x+2)2-2向右平移2個單位后所得拋物線的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省漳州市雙語實驗學(xué)校自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•徐匯區(qū)二模)如圖,拋物線y=ax2+bx+c(a≠0)與y軸正半軸交于點C,與x軸交于點A(2,0)、B(8,0),∠OCA=∠OBC.
(1)求拋物線的解析式;
(2)在直角坐標(biāo)平面內(nèi)確定點M,使得以點M、A、B、C為頂點的四邊形是平行四邊形,請直接寫出點M的坐標(biāo);
(3)若存在一點P到點A、B、C三點的距離相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市徐匯區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2009•徐匯區(qū)二模)擲一枚質(zhì)地均勻的正方體骰子,骰子的六個面分別刻有1到6的點數(shù),擲出的點數(shù)大于4的概率為   

查看答案和解析>>

同步練習(xí)冊答案