【題目】閱讀下內容,再解決問題.
在把多項式m2﹣4mn﹣12n2進行因式分解時,雖然它不符合完全平方公式,但是經過變形,可以利用完全平方公式進行分解:
m2﹣4mn﹣12n2=m2﹣4mn+4n2﹣4n2﹣12n2=(m﹣2n)2﹣16n2=(m﹣6n)(m+2n),像這樣構造完全平方式的方法我們稱之為“配方法”,利用這種方法解決下面問題.
(1)把多項式因式分解:a2﹣6ab+5b2;
(2)已知a、b、c為△ABC的三條邊長,且滿足4a2﹣4ab+2b2+3c2﹣4b﹣12c+16=0,試判斷△ABC的形狀.
科目:初中數(shù)學 來源: 題型:
【題目】某市計劃進行一項城市美化工程,已知乙隊單獨完成此項工程比甲隊單獨完成此項工程多用10天,且甲隊單獨施工30天和乙隊單獨施工45天的工作量相同.
(1)甲、乙兩隊單獨完成此項工作各需多少天?
(2)已知甲隊每天的施工費用為8000元,乙隊每天的施工費用為6000元.為了縮短工期,指揮部決定該工程由甲、乙兩隊一起完成.則該工程施工費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(圖4).把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠BAC=120°,以BC為邊向形外作等邊三角形BCD,把△ABD繞著點D按順時針方向旋轉60°后得到△ECD,若AB=5,AC=3,求∠BAD的度數(shù)與AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列高鐵列車從甲地勻速駛往乙地,一列特快列車從乙地勻速駛往甲地,兩車同時出發(fā),設特快列車行駛的時間為x(單位:時),特快列車與高鐵列車之間的距離為y(單位:千米),y與x之間的函數(shù)關系如圖所示,則圖中線段CD所表示的y與x之間的函數(shù)關系式是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠CAB=45°,BD⊥AC于點D,AE⊥BC于點E,DF⊥AB于點F,AE與DF交于點G,連接BG.
(1)求證:AG=BG;
(2)已知AG=5,BE=4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B(點A在點B的左側),與y軸交于點C(0,﹣3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D.
(1)求拋物線的函數(shù)解析式;
(2)求直線BC的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com