【題目】已知△ABC,點(diǎn)D、F分別為線段AC、AB上兩點(diǎn),連接BD、CF交于點(diǎn)E.

(1)BD⊥AC,CF⊥AB,若BE=4,CE=2,求CD:BF;

(2)BD平分∠ABC,CF平分∠ACB,如圖2所示,猜想∠BEC∠A的數(shù)量關(guān)系;并說(shuō)明理由.

(3)在(2)的條件下,若∠A=60°,試說(shuō)明:BC=BF+CD.

【答案】(1)1:2(2)∠BEC=90°+∠A(3)證明見解析

【解析】

(1)根據(jù)∠BEF=CED,BFE=CDE=90°可證明BEFCED,根據(jù)相似三角形的性質(zhì)即可得答案;(2)根據(jù)角平分線的性質(zhì)得到∠EBC=ABC,ECB=ACB,根據(jù)三角形內(nèi)角和定理即可得到結(jié)論;(3)BC上截取BM=BF,連接EM,根據(jù)SAS可證明BEFBEM,可得∠BEF=BEM,由(2)可得∠BEC=120°,即可證∠∠BEF=BEM=CEM=CED=60°,即可證明CEMCED,進(jìn)而可得CD=CM,即可證明BC=BF+CD.

(1)∵∠BEF=CED,BFE=CDE=90°,

BEFCED,

BE=4,CE=2,

CD:BF=1:2.

(2)BEC =90°+A;理由如下:

BD平分∠ABC,CF平分∠ACB,

∴∠EBC=ABC,ECB=ACB,

∴∠BEC=180°-(ABC+ACB),

∵∠ABC+ACB=180°-A,

∴∠BEC=180°-(180°-A)=90°+A.

(3)如圖:在BC上截取BM=BF,連接EM,

∵∠A=60°,

∴由(2)可知∠BEC=90°+A=120°,

∴∠BEF=60°,

BE平分∠ABC,

∴∠FBE=EBM,

BF=BM,FBE=EBM,BE=BE,

BEFBEM(SAS),

∴∠BEM=BEF=60°,

∴∠CEM=60°,

∴∠CED=CEN=60°,

CE平分∠ACB,

∴∠DCE=MCE,

∵∠CED=CEN=60°,CE=CE,DCE=MCE,

CEMCED(ASA),

CD=CM,

BC=BM+CM=BF+CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,AC=BC,E為AC邊的中點(diǎn),過(guò)點(diǎn)A作ADAB交BE的延長(zhǎng)線于點(diǎn)D,CG平分ACB交BD于點(diǎn)G,F(xiàn)為AB邊上﹣點(diǎn),連接CF,且∠ACF=∠CBG.

(1)求證:AF=CG;

(2)寫出圖中長(zhǎng)度等于2DE的所有線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)B、E、C、F在一條直線上,AC∥DE,AC=DE,∠A=∠D.

(1)求證:AB=DF;

(2)BC=9,EC=6,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200,170元的A,B兩種型號(hào)的電風(fēng)扇,表中是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

1800

第二周

4臺(tái)

10臺(tái)

3100

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入-進(jìn)貨成本)

(1)A,B兩種型號(hào)的電風(fēng)扇的銷售單價(jià).

(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸和y軸上,OA=1,OB= ,連接AB,過(guò)AB中點(diǎn)C1分別作x軸和y軸的垂線,垂足分別是點(diǎn)A1、B1 , 連接A1B1 , 再過(guò)A1B1中點(diǎn)C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點(diǎn)Cn的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校少年宮數(shù)學(xué)課外活動(dòng)初三小組的同學(xué)為測(cè)量一座鐵塔AM的高度如圖,他們?cè)谄露仁莍=1:2.5的斜坡DE的D處,測(cè)得樓頂?shù)囊苿?dòng)通訊基站鐵塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根據(jù)所學(xué)知識(shí)很快計(jì)算出了鐵塔高AM.親愛(ài)的同學(xué)們,相信你也能計(jì)算出鐵塔AM的高度!請(qǐng)你寫出解答過(guò)程.(數(shù)據(jù) ≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車間有22名工人,每人每天可生產(chǎn)1200個(gè)螺釘或2000個(gè)螺母,1個(gè)螺釘需配2個(gè)螺母,為使生產(chǎn)的螺釘和螺母剛好配套,若設(shè)x名工人生產(chǎn)螺釘,依題意列方程為( )

A. 1200x=2000(22-x) B. 1200x=22000(22-x)

C. 1200(22-x)=2000x D. 21200x=2000(22-x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的分式方程 = 有解,則字母a的取值范圍是(
A.a=5或a=0
B.a≠0
C.a≠5
D.a≠5且a≠0

查看答案和解析>>

同步練習(xí)冊(cè)答案