【題目】如圖,已知動點A在函數(shù)的圖象上,ABx軸于點B,ACy軸于點C,延長CA交以A為圓心AB長為半徑的圓弧于點E,延長BA交以A為圓心AC長為半徑的圓弧于點F,直線EF分別交x軸、y軸于點M、N,當(dāng)NF4EM時,圖中陰影部分的面積等于_____

【答案】2.5π

【解析】

DFy軸于點D,EGx軸于G,得到GEM∽△DNF,于是得到4,設(shè)GMt,則DF4t,然后根據(jù)AEF∽△GME,據(jù)此即可得到關(guān)于t的方程,求得t的值,進而求解.

解:作DFy軸于點D,EGx軸于G,

∴△GEM∽△DNF

NF4EM,

4

設(shè)GMt,則DF4t,

A4t),

ACAFAEAB,

AF4t,AEEG,

∵△AEF∽△GME

AFEGAEGM,

4tt,即4t2

t2,

圖中陰影部分的面積=2π+π2.5π,

故答案為2.5π

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On均與直線l相切,設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,,rn,則當(dāng)直線l與x軸所成銳角為30時,且r1=1時,r2017=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將A(1,0)、B(0,2)、C(2,3)、D(3,1)用線段依次連接起來形成一個圖案(圖案).將圖案繞點O逆時針旋轉(zhuǎn)90°得到圖案;以點O為位似中心,位似比為1:2將圖案在位似中心的異側(cè)進行放大得到圖案

(1)在坐標(biāo)系中分別畫出圖案和圖案;

(2)若點D在圖案中對應(yīng)的點記為點E,在圖案中對應(yīng)的點記為點F,則SDEF= ;

(3)若圖案上任一點P(A、B除外)的坐標(biāo)為(a,b),圖案中與之對應(yīng)的點記為點Q,圖案中與之對應(yīng)的點記為點R,則SPQR= .(用含有a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為圓外一點,AC交⊙O于點DBC2=CDCA,弦ED=BD,BEACF.

(1)求證:BC為⊙O切線;

(2)判斷BCF的形狀并說明理由;

(3)已知BC=15,CD=9,求tanADE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[問題情境]

我們知道數(shù)軸上的兩點A、B的距離|AB||xAxB|,那么如果已知平面上兩點P1(x1,y1),P2(x2,y2),如何求P1P2的距離d(P1P2)呢?

下面我們就來研究這個問題.

問題 一般地,已知平面上兩點P1(x1,y1)P2(x2,y2),如何求點P1P2的距離?

: 當(dāng)x1≠x2y1y2時,|P1P2||x2x1|;

當(dāng)x1x2y1≠y2時,|P1P2||y2y1|;

當(dāng)x1≠x2y1≠y2時,如圖,

RtP1QP2中,由勾股定理知,

|P1P2|2|P1Q|2|QP2|2,所以d(P1P2)|P1P2|.

歸納:兩點P1(x1,y1)P2(x2,y2)間的距離公式d(P1,P2)|P1P2|.

解決問題:

1)已知A2-4),B-2,3),求dA,B

2)已知點A(1,2),B(3,4)C(5,0),求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②;③;④.其中正確的結(jié)論是(

A.①②B.①③C.①③④D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A1,);點F0,1)在y軸上.直線y=﹣1y軸交于點H

1)求二次函數(shù)的解析式;

2)點P是(1)中圖象上的點,過點Px軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;

3)當(dāng)△FPM是等邊三角形時,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,初三數(shù)學(xué)興趣小組同學(xué)為了測量垂直于水平地面的一座大廈AB的高度,一測量人員在大廈附近C處,測得建筑物頂端A處的仰角大小為45°,隨后沿直線BC向前走了60米后到達D處,在D處測得A處的仰角大小為30°,則大廈AB的高度約為多少米?(注:不計測量人員的身高,結(jié)果按四舍五入保留整數(shù),參考數(shù)據(jù):1.41,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】借鑒我們已有的研究函數(shù)的經(jīng)驗,探索函數(shù)y|x22x3|2圖象和性質(zhì),探究過程如下,請補充完整.

1)自變量x的取值范圍是全體實數(shù),xy的幾組對應(yīng)值列表如下:

x

3

2

1

0

1

2

3

4

5

y

10

m

2

1

n

1

2

3

10

其中,m   n   ;

2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出函數(shù)圖象;

3)觀察函數(shù)圖象:

①當(dāng)方程|x22x3|b+2有且僅有兩個不相等的實數(shù)根時,根據(jù)函數(shù)圖象直接寫出b的取值范圍為   

②在該平面直角坐標(biāo)系中畫出直線yx+2的圖象,根據(jù)圖象直接寫出該直線與函數(shù)y|x22x3|2的交點橫坐標(biāo)為:   (結(jié)果保留一位小數(shù)).

查看答案和解析>>

同步練習(xí)冊答案