【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0②當(dāng)-1≤x≤3時,y<0③若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)x1<x2時,y1<y2④9a+3b+c=0其中正確的是( )
A.①②④ B.①④ C.①②③ D.③④
【答案】B.
【解析】
試題解析:①∵函數(shù)圖象的對稱軸為:x=-=1,
∴b=-2a,即2a+b=0,故①正確;
②∵拋物線開口方向朝上,
∴a>0,
又∵二次函數(shù)y=ax2+bx+c的圖象與x軸交點為(-1,0)、(3,0),
∴當(dāng)-1≤x≤3時,y≤0,故②錯誤;
③∵拋物線的對稱軸為x=1,開口方向向上,
∴若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)1<x1<x2時,y1<y2;當(dāng)x1<x2<1時,y1>y2;
故③錯誤;
④∵二次函數(shù)y=ax2+bx+c的圖象過點(3,0),
∴x=3時,y=0,即9a+3b+c=0,故④正確.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車在連通A、B、C三地的公路上行駛,甲車從A地出發(fā)勻速向C地行駛,同時乙車從C地出發(fā)勻速向b地行駛,到達(dá)B地并在B地停留1小時后,按原路原速返回到C地.在兩車行駛的過程中,甲、乙兩車距B地的路程y(千米)與行駛時間x(小時)之間的函數(shù)圖象如圖所示,請結(jié)合圖象回答下列問題:
(1)求甲、乙兩車的速度,并在圖中( )內(nèi)填上正確的數(shù):
(2)求乙車從B地返回到C地的過程中,y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)甲、乙兩車行駛到距B地的路程相等時,甲、乙兩車距B地的路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的兩邊長為4和5,第三邊的長是方程x2﹣5x+6=0的一個根,則這個三角形的周長是( 。
A. 11 B. 12 C. 11或12 D. 15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成推理填空:如圖在△ABC中,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠C.
解:∵∠1+∠EFD=180°(鄰補(bǔ)角定義),∠1+∠2=180°(已知。
∴ (同角的補(bǔ)角相等)①
∴ (內(nèi)錯角相等,兩直線平行)②
∴∠ADE=∠3( )③
∵∠3=∠B( )④
∴ (等量代換)⑤
∴DE∥BC( )⑥
∴∠AED=∠C( )⑦
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解放中學(xué)為了了解學(xué)生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中所給的信息解答下列問題.
(1)喜愛動畫的學(xué)生人數(shù)和所占比例分別是多少?
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計該校喜歡體育的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分別寫出下列各點關(guān)于x軸和y軸對稱的點的坐標(biāo):
(-2,6)關(guān)于x軸對稱的點的坐標(biāo) , 關(guān)于y軸對稱的點的坐標(biāo);(-4,-2)關(guān)于x軸對稱的點的坐標(biāo) , 關(guān)于y軸對稱的點的坐標(biāo) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com