【題目】如圖,拋物線y1=a(x+2)2+m過原點,與拋物線y2=(x﹣3)2+n交于點A(1,3),過點Ax軸的平行線,分別交兩條拋物線于點B,C.下列結論:兩條拋物線的對稱軸距離為5;②x=0時,y2=5;③x>3時,y1﹣y2>0;④y軸是線段BC的中垂線.正確結論是________(填寫正確結論的序號).

【答案】①③④

【解析】

根據(jù)題意分別求出兩個二次函數(shù)的解析式,根據(jù)函數(shù)的對稱軸判定①;令x=0,求出y2的值,比較判定②;觀察圖象,判定③;令y=3,求出A、B、C的橫坐標,然后求出AB、AC的長,判定④.

∵拋物線y1=a(x+2)2+m與拋物線y2=(x﹣3)2+n的對稱軸分別為x=-2,x=3,

∴兩條拋物線的對稱軸距離為5,故①正確;

拋物線y2=(x﹣3)2+n交于點A(1,3),

∴2+n=3,即n=1;

y2=(x﹣3)2+1,

把x=0代入y2=(x﹣3)2+1得,y=≠5,②錯誤;

由圖象可知,當x>3時,y1>y2,∴x>3時,y1﹣y2>0,③正確;

∵拋物線y1=a(x+2)2+m過原點和點A(1,3),

,

解得

.

y1=3,則

解得x1=-5,x2=1,

∴AB=1-(-5)=6,

∴A(1,3),B(-5,3);

y2=3,則(x﹣3)2+1=3,

解得x1=5,x2=1,

∴C(5,3),

∴AC=5-1=4,

∴BC=10,

∴y軸是線段BC的中垂線,故④正確.

故答案為①③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,DAB上一點,過D點作AB垂線,交ACE,交BC的延長線于F

1)∠1與∠B有什么關系?說明理由.

2)若BCBD,請你探索ABFB的數(shù)量關系,并且說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的網格中有四條線段AB、CDEF、GH(線段端點在格點上),

選取其中三條線段,使得這三條線段能圍成一個直角三角形.

答:選取的三條線段為

只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標上必要的字母).

答:畫出的直角三角形為△

所畫直角三角形的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點EBC邊上,AE=AB,將線段ACA點旋轉到AF的位置,使得∠CAF=BAE,連接EFEFAC交于點G.

(1)求證:EF=BC;

(2)若∠ABC=62°,ACB=29°,求∠FGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB=90°,AD平分∠BAC,過點DAC的平行線交AB于點O,DEADAB于點E.

(1)求證:點OAE的中點;

(2)若點FAC邊上一點,且OF=OA,連接EF,如圖2,判斷EFAC的位置關系,并說明理由;

(3)在(2)的條件下,試探究線段AE、AF、AC之間滿足的等量關系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勞動節(jié)期間,某商場為吸引顧客,設立了一個可以自由轉動的轉盤(如圖,轉盤被平均分成20份),并規(guī)定:顧客每購物滿200元,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準標有數(shù)字的區(qū)域(未標數(shù)字的視為0),則顧客就可以分別獲得該區(qū)域相應數(shù)字的返金券,憑返金券可以在該商場繼續(xù)購物.若顧客不愿意轉轉盤,則每購物滿200元可享受九五折優(yōu)惠.

(1)寫出轉動一次轉盤獲得返金券的概率;

(2)轉轉盤和直接享受九五折優(yōu)惠,你認為哪種方式對顧客更合算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB、CD邊于點E、F.

(1)求證:四邊形BEDF是平行四邊形;

(2)求證:△ADE≌△CBF;

(3)當四邊形BEDF是菱形時,直接寫出線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線

求該拋物線的對稱軸和頂點坐標;

求拋物線與軸交點的坐標;

畫出拋物線的示意圖;

根據(jù)圖象回答:當在什么范圍時,的增大而增大?當在什么范圍時,的增大而減?

根據(jù)圖象回答:當為何值時,;當為何值時,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點三條角平分線的交點,,,,且,,,則點到三邊、的距離為(

A. 2cm,2cm,2cm B. 3cm,3cm,3cm

C. 4cm,4cm,4cm D. 2cm,3cm,5cm

查看答案和解析>>

同步練習冊答案