【題目】為了保證端午節(jié)龍舟賽在我市僑港海域順利舉辦,某部門工作人員乘快艇到僑港海域考察水情,以每秒11米的速度沿平行于岸邊的賽道AB由西向東行駛,在A處測(cè)得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達(dá)B處時(shí),測(cè)得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結(jié)果保留根號(hào)).

【答案】建筑物P到賽道AB的距離為110米.

【解析】

PCABC,構(gòu)造出RtPACRtPBC,求出AB的長度,利用特殊角的三角函數(shù)值求解.

P點(diǎn)作PCABC,由題意可知:PAC60°,PBC30°,

Rt△PAC中,tan∠PAC,

ACPC

Rt△PBC中,tan∠PBC,

BCPC,

ABAC+BCPC+PC11×40

PC110,

答:建筑物P到賽道AB的距離為110米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點(diǎn),連接AE,折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過點(diǎn)B,得到折痕BF,點(diǎn)F在AD上,若DE=5,則GE的為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(5,4),⊙My軸相切于點(diǎn)C,與x軸相交于A、B兩點(diǎn).

1)則點(diǎn)A、BC的坐標(biāo)分別是A__,__),B____),C__,__);

2)設(shè)經(jīng)過A、B兩點(diǎn)的拋物線解析式為,它的頂點(diǎn)為F,求證:直線FA與⊙M相切;

3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,且點(diǎn)Px軸的上方,使PBC是等腰三角形.如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx+m的圖象與反比例函數(shù)y的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)求點(diǎn)C的坐標(biāo);

3)結(jié)合圖象直接寫出不等式0x+m的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請(qǐng)補(bǔ)充完整,并解決相關(guān)問題:

(1)函數(shù)的自變量x的取值范圍是

(2)下表是yx的幾組對(duì)應(yīng)值.

x

0

1

2

3

4

y

2

4

2

m

表中m的值為________________;

(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫出函數(shù)的大致圖象;

(4)結(jié)合函數(shù)圖象,請(qǐng)寫出函數(shù)的一條性質(zhì):______________________.

(5)解決問題:如果函數(shù)與直線y=a的交點(diǎn)有2個(gè),那么a的取值范圍是______________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,其對(duì)稱軸是x=﹣1,且過點(diǎn)A(30),下列說法:①abc0;②2ab0;③4a+2b+c0;④若(2,y1),(,y2)是拋物線上兩點(diǎn),則y1y2,其中說法正確的是( )

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過B、C兩點(diǎn).

(1)求拋物線的解析式;

(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo);

(3)在(2)的結(jié)論下,過點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,矩形OABC的兩個(gè)頂點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B的坐標(biāo)是(8,2),點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),連接AP,以AP為一邊朝點(diǎn)B方向作正方形PADE,連接OP并延長與DE交于點(diǎn)M,設(shè)CPaa0).

1)請(qǐng)用含a的代數(shù)式表示點(diǎn)P,E的坐標(biāo).

2)連接OE,并把OE繞點(diǎn)E逆時(shí)針方向旋轉(zhuǎn)90°得EF.如圖2,若點(diǎn)F恰好落在x軸的正半軸上,求a的值.

3)①如圖1,當(dāng)點(diǎn)MDE的中點(diǎn)時(shí),求a的值.

②在①的前提下,并且當(dāng)a4時(shí),OP的延長線上存在點(diǎn)Q,使得EQ+PQ有最小值,請(qǐng)直接寫出EQ+PQ的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形的一條邊,將矩形折疊,使得頂點(diǎn)落在邊上的點(diǎn)處. 如圖,已知折痕與邊交于點(diǎn),連結(jié).

1)求證:

2)若,求邊的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案