在等腰梯形ABCD中,AD∥BC,AB=DC,且BC=2.以CD為直徑作⊙O1交AD于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F.建立如圖所示的平面直角坐標(biāo)系,已知A、B兩點(diǎn)坐標(biāo)分別為A(2,0),B(0,).
(1)求C,D兩點(diǎn)的坐標(biāo);
(2)求證:EF為⊙O1的切線;
(3)線段CD上是否存在點(diǎn)P,使以點(diǎn)P為圓心,PD為半徑的⊙P與y軸相切.如果存在,請(qǐng)求出P點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)連CE,根據(jù)圓周角定理的推論得到CE⊥DE,再根據(jù)等腰梯形的性質(zhì)得DE=OA=2,則OD=2+2=4,即可寫(xiě)出C點(diǎn)坐標(biāo)和D點(diǎn)坐標(biāo);
(2)AB=4,易得∠DCE=30°,則∠CDE=∠A=60°,得到△O1DE為等邊三角形,則∠O1ED=60°,而EF⊥AB,有∠FEA=30°,于是∠O1EF=90°,根據(jù)切線的判定即可得到結(jié)論;
(3)設(shè)⊙與y軸相切于F,連PF,過(guò)C作CE⊥x軸與E,交PF于H,⊙P的半徑為R,根據(jù)切線的性質(zhì)得PF⊥y軸,則PD=PF=R,所以有PH=R-2,PC=4-R,DE=2,易證得Rt△CPH∽R(shí)t△CDE,理由相似比可求出R和CH,可得到HE,即可寫(xiě)出P點(diǎn)坐標(biāo).
解答:(1)解:連CE,如圖,
∵CD為⊙O1的直徑,
∴CE⊥DE,
∵四邊形ABCD是等腰梯形,BC=2,A(2,0),B(0,).
∴DE=OA=2,
∴OD=2+2=4,
∴C點(diǎn)坐標(biāo)為(-2,2),D點(diǎn)坐標(biāo)為(-4,0);


(2)證明:∵DE=2,DC=AB==4,
∴∠DCE=30°,
∴∠CDE=∠A=60°,
∴△O1DE為等邊三角形,
∴∠O1ED=60°,
而EF⊥AB,
∴∠FEA=30°,
∴∠O1EF=90°,
∴EF為⊙O1的切線;

(3)存在.理由如下:
設(shè)⊙P與y軸切與F,連PF,過(guò)C作CE⊥x軸與E,交PF于H,⊙P的半徑為R,如圖,
∴PF⊥y軸,
∴PD=PF=R,
∴PH=R-2,PC=4-R,DE=2,
易證得Rt△CPH∽R(shí)t△CDE,
==,即==,解得R=,CH=,
∴HE=2-=
∴P點(diǎn)坐標(biāo)為(-,).
點(diǎn)評(píng):本題考查了切線的判定與性質(zhì):過(guò)半徑的外端點(diǎn)與半徑垂直的直線是圓的切線;圓的切線垂直于過(guò)切點(diǎn)的半徑.也考查了圓周角定理的推論、三角形相似的判定與性質(zhì)以及等腰梯形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,則下底BC的長(zhǎng)為
7
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,點(diǎn)P為BC邊上任意一點(diǎn),且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分別是E、F、G,請(qǐng)你探索PE、PF、BG的長(zhǎng)度之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E為邊BC上一點(diǎn),且AE=DC.
(1)求證:四邊形AECD是平行四邊形;
(2)當(dāng)∠B=2∠DCA時(shí),求證:四邊形AECD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AD∥BC,M是AD的中點(diǎn),MB=MC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足為O,過(guò)D作DE∥AC交BC的延長(zhǎng)線于E.
(1)求證:四邊形ACED是平行四邊形;
(2)若AD=4,BC=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案