【題目】下列各式中不能用平方差公式計(jì)算的是(
A.(x﹣y)(﹣x+y)
B.(﹣x+y)(﹣x﹣y)
C.(﹣x﹣y)(x﹣y)
D.(x+y)(﹣x+y)

【答案】A
【解析】解:A、由于兩個(gè)括號(hào)中含x、y項(xiàng)的符號(hào)都相反,故不能使用平方差公式,A正確; B、兩個(gè)括號(hào)中,﹣x相同,含y的項(xiàng)的符號(hào)相反,故能使用平方差公式,B錯(cuò)誤;
C、兩個(gè)括號(hào)中,含x項(xiàng)的符號(hào)相反,y項(xiàng)的符號(hào)相同,故能使用平方差公式,C錯(cuò)誤;
D、兩個(gè)括號(hào)中,含x項(xiàng)的符號(hào)相反,y項(xiàng)的符號(hào)相同,故能使用平方差公式,D錯(cuò)誤;
故選:A.
根據(jù)公式(a+b)(a﹣b)=a2﹣b2的左邊的形式,判斷能否使用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把橫縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.

(1)直接寫出函數(shù)y=圖象上的所有“整點(diǎn)”A1,A2,A3,…的坐標(biāo);

(2)在(1)的所有整點(diǎn)中任取兩點(diǎn),用樹狀圖或列表法求出這兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一條長(zhǎng)為21cm的鐵絲圍成了一個(gè)等腰三角形,如果腰長(zhǎng)是底邊長(zhǎng)的3倍,則這個(gè)等腰三角形的底邊長(zhǎng)為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD對(duì)角線交于點(diǎn)O,點(diǎn)E是線段BO上的動(dòng)點(diǎn)(與點(diǎn)B、O不重合),連接CE,過A點(diǎn)作AF∥CE交BD于點(diǎn)F,連接AE與CF.

(1)求證:四邊形AECF是平行四邊形;

(2)當(dāng)BA=BC=2,∠ABC=60°時(shí),AECF能否成為正方形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班10名學(xué)生體育測(cè)試的成績(jī)(單位:分)分別為:58,60,5952,5855,57,58,49,57,則這組數(shù)據(jù)的眾數(shù)、中位數(shù)分別為(

A.58,57.5B.5757.5C.58,58D.58,57

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)A(x1 , y1)和點(diǎn)B(x2 , y2)在正比例函數(shù)y=-3x的圖象上,當(dāng)x1<x2時(shí),y1與y2的大小關(guān)系為( )
A.y1>y2
B.y1<y2
C.y1=y2
D.y1與y2的大小不一定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校2013(3)班的四個(gè)小組中,每個(gè)小組同學(xué)的平均身高大致相同,若: 第一小組同學(xué)身高的方差為1.7,第二小組同學(xué)身高的方差為1.9,
第三小組同學(xué)身高的方差為2.3,第四小組同學(xué)身高的方差為2.0,
則在這四個(gè)小組中身高最整齊的是第小組.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOB交AB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過點(diǎn)D作DE//OC交y軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n2-12+36+|n-2m|=0.

(1)求A、B兩點(diǎn)的坐標(biāo)?

(2)若點(diǎn)D為AB中點(diǎn),求OE的長(zhǎng)?

(3)如圖2,若點(diǎn)P(x,-2x+6)為直線AB在x軸下方的一點(diǎn),點(diǎn)E是y軸的正半軸上一動(dòng)點(diǎn),以E為直角頂點(diǎn)作等腰直角△PEF,使點(diǎn)F在第一象限,且F點(diǎn)的橫、縱坐標(biāo)始終相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A3,0),B1,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求該二次函數(shù)的解析式;

2)設(shè)該拋物線的頂點(diǎn)為D,求ACD的面積;

3)若點(diǎn)PQ同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿ABAC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請(qǐng)直接判定此時(shí)四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案