國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某企業(yè)生產(chǎn)的一種環(huán)保設(shè)備供不應(yīng)求.若該企業(yè)的這種環(huán)保設(shè)備每年的產(chǎn)量保持在一定的范圍,每套設(shè)備的生產(chǎn)成本不高于50萬元,每套設(shè)備的售價(jià)不低于90萬元.已知這種設(shè)備的年產(chǎn)量x(套)與每套的售價(jià)y1(萬元)之間滿足關(guān)系式y(tǒng)1=170-2x,年產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.另外企業(yè)每年其它的總支出為700萬元.
(1)直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)求年產(chǎn)量x的范圍;
(3)當(dāng)年產(chǎn)量x(套)為多少時(shí),這種設(shè)備的年利潤W(萬元)最大?最大利潤是多少?
(4)該企業(yè)希望這種設(shè)備的年利潤不低于1218萬元,請(qǐng)你利用(3)小題中的函數(shù)圖象幫助該企業(yè)確定這種設(shè)備的銷售單價(jià)的范圍.在此條件下要使設(shè)備的生產(chǎn)成本最低,你認(rèn)為銷售單價(jià)應(yīng)定為多少萬元比較精英家教網(wǎng)合適?
分析:(1)設(shè)函數(shù)關(guān)系式為y2=kx+b,把(30,1400)(40,1700)代入求解即可;
(2)根據(jù)題中條件“每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價(jià)不低于90萬元”列出不等式組求解年產(chǎn)量x的范圍;
(3)根據(jù)等量關(guān)系“設(shè)備的利潤=每臺(tái)的售價(jià)×月產(chǎn)量-生產(chǎn)總成本-其它的總支出”列出函數(shù)關(guān)系式求得最大值.
解答:解:(1)設(shè)y2=kx+b,由題意得:
30k+b=1400
40k+b=1700
,
解得:
k=30
b=500
,
即y2與x之間的函數(shù)關(guān)系式為y2=30x+500;

(2)依題意得:
500+30x≤50x
170-2x≥90
,
解得:25≤x≤40;

(3)∵W=x•y1-y2-700=x(170-2x)-(500+30x)-700=-2x2+140x-1200=-2(x-35)2+1250
∵25<35<40,
∴當(dāng)x=35時(shí),W最大=1250萬元,
即年產(chǎn)量為35套時(shí),年利潤最大,最大利潤為1250萬元.

(4)令W=1218,得-2(x-35)2+1250=1218,
解得:x1=31,x2=39,
通過(3)中的函數(shù)可知,要使這種產(chǎn)品一年的銷售利潤不低于1218萬元,年銷售量要在31套到39套之間,銷售單價(jià)在92萬到108萬之間.
銷售單價(jià)定為108萬元比較合適.
點(diǎn)評(píng):本題考查了二次函數(shù)的應(yīng)用及待定系數(shù)法求函數(shù)解析式,難點(diǎn)在第二問,要求我們熟練運(yùn)用配方法求二次函數(shù)的最值,另外要結(jié)合實(shí)際,考慮是否能取到最。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價(jià)不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價(jià)y1(萬元)之精英家教網(wǎng)間滿足關(guān)系式y(tǒng)1=170-2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
(1)直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時(shí),這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泉州)國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費(fèi)為b元,據(jù)市場(chǎng)調(diào)查知:每輛車改裝前、后的燃料費(fèi)(含改裝費(fèi))y0、y1(單位:元)與正常運(yùn)營時(shí)x(單位:天)之間分別滿足關(guān)系式:y0=ax、y1=b+50x,如圖所示.
試根據(jù)圖象解決下列問題:
(1)每輛車改裝前每天的燃料費(fèi)a=
90
90
元;每輛車的改裝費(fèi)b=
4000
4000
元,正常營運(yùn)
100
100
天后,就可以從節(jié)省的燃料費(fèi)中收回改裝成本;
(2)某出租車公司一次性改裝了100輛出租車,因而,正常運(yùn)營多少天后共節(jié)省燃料費(fèi)40萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了響應(yīng)國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”號(hào)召,某公司2011年研發(fā)出一種新型節(jié)能產(chǎn)品,2011年下半年上市后價(jià)格一路攀高.該產(chǎn)品的售價(jià)y(元/個(gè))與月份x(7≤x≤12,且x取正整數(shù))之間的關(guān)系如下表:
月份x 7月 8月 9月 10月
售價(jià) y(元/個(gè)) 56 60 64 68
該產(chǎn)品的月銷售量p(百個(gè))與月份x(7≤x≤12,且x取正整數(shù))之間滿足函數(shù)關(guān)系:p=-2x+50.
(1)請(qǐng)觀察題中格,用所學(xué)過一次函數(shù)、反比例函數(shù)或二次函數(shù)有關(guān)知識(shí),求出該產(chǎn)品的售價(jià)y(元/個(gè))與月份x的函數(shù)關(guān)系式;
(2)請(qǐng)問該公司第幾月份銷售額達(dá)到最大?最大銷售額是多少元?
(3)今1月份開始售價(jià)上漲減緩,每月比上月上漲2元/個(gè),且月銷售量在去年12月的月銷售量的基礎(chǔ)上每月減少300個(gè).4月下旬以來,全國各地嚴(yán)重缺電,受“電荒限電”的影響,該公司5月產(chǎn)量下降,導(dǎo)致5月的銷售量比4月份下降1.5a%.該公司為了穩(wěn)定銷售額,決定漲價(jià)銷售,5月的銷售價(jià)格比4月份上漲0.5a%.此種商品在第5月的銷售額比第4月的銷售額剛好少16800元,請(qǐng)你參考以下數(shù)據(jù),通過計(jì)算估算出的a整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費(fèi)為b元,據(jù)市場(chǎng)調(diào)查知:每輛車改裝前、后的燃料費(fèi)(含改裝費(fèi))y0、y1(單位:元)與正常運(yùn)營時(shí)x(單位:天)之間分別滿足關(guān)系式:y0=ax、y1=b+50x,如圖所示.
試根據(jù)圖象解決下列問題:
(1)每輛車改裝前每天的燃料費(fèi)a=
90
90
元;每輛車的改裝費(fèi)b=
4000
4000
元,正常營運(yùn)
100
100
天后,就可以從節(jié)省的燃料費(fèi)中收回改裝成本;
(2)某出租車公司一次性改裝了100輛出租車,因而,正常運(yùn)營
200
200
天后共節(jié)省燃料費(fèi)40萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案