【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,在直線CD上有一點(diǎn)P.
(1)如果P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),問∠PAC,∠APB,∠PBD有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
(2)若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
【答案】∠APB=∠PBD-∠PAC或∠APB=∠PAC-∠PBD
【解析】試題分析:(1)過點(diǎn)P作PE∥l1根據(jù)l1∥l2得出PE∥l2∥l1,從而得出∠PAC=∠1,∠PBD=∠2,然后得出答案;(2)分點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),在l1上方和在l2下方時(shí)兩種情況,分別根據(jù)(1)的方法得出答案.
試題解析:(1)當(dāng)點(diǎn)P在C、D之間運(yùn)動(dòng)時(shí),∠APB=∠PAC+∠PBD.理由如下:
過點(diǎn)P作PE∥l1,
∵l1∥l2,
∴PE∥l2∥l1,
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;
(2)ⅰ)當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l1上方時(shí),∠PBD=∠PAC+∠APB.理由如下:
∵l1∥l2,
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
ⅱ)當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l2下方時(shí),∠PAC=∠PBD+∠APB.理由如下:
∵l1∥l2,
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=4,以頂點(diǎn)A,B為圓心,以AD、BC長(zhǎng)為半徑作兩條弧,兩弧相切于點(diǎn)E,且E在AB上,以AB為直徑作半圓恰好與DC相切,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:四條邊都相等且四個(gè)角都是直角的四邊形叫做正方形。我校“快樂走班”數(shù)學(xué)興趣小組開展了一次課外活動(dòng),過程如下:如圖①,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)與D點(diǎn)重合.三角板的一邊交AB于點(diǎn)P,另一邊交BC的延長(zhǎng)線于點(diǎn)Q.
(1)求證:DP=DQ;
(2)如圖②,小明在圖1的基礎(chǔ)上作∠PDQ的平分線DE交BC于點(diǎn)E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請(qǐng)猜測(cè)他的結(jié)論并予以證明;
(3)如圖③,固定三角板直角頂點(diǎn)在D點(diǎn)不動(dòng),轉(zhuǎn)動(dòng)三角板,使三角板的一邊交AB的延長(zhǎng)線于點(diǎn)P,另一邊交BC的延長(zhǎng)線于點(diǎn)Q,仍作∠PDQ的平分線DE交BC延長(zhǎng)線于點(diǎn)E,連接PE,若AB:AP=3:4,請(qǐng)幫小明算出△DEP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.
(1)如圖,一束光線m射到平面鏡a上,被a反射到平面鏡b上,又被b鏡反射.若被b反射出的光線n與光線m平行,且∠1=50°,則∠2=________,∠3=________;
(2)在(1)中,若∠1=55°,則∠3=________;若∠1=40°,則∠3=________;
(3)由(1)、(2)請(qǐng)你猜想:當(dāng)兩平面鏡a,b的夾角∠3=________時(shí),可以使任何射到平面鏡a上的光線m,經(jīng)過平面鏡a,b的兩次反射后,入射光線m與反射光線n平行,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠EFC+∠BDC=180°,∠DEF=∠B.
(1)求證:∠ADE=∠DEF;
(2)判定 DE 與 BC 的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x和y軸分別交于點(diǎn)B和點(diǎn)C,與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng).
(1)求點(diǎn)B和點(diǎn)C的坐標(biāo).
(2)求△OAC的面積.
(3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在,求出此時(shí)點(diǎn)M的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點(diǎn)為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點(diǎn)為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點(diǎn)為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點(diǎn)為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點(diǎn)為En.
(1)如圖①,求證:∠BEC=∠ABE+∠DCE;
(2)如圖②,求證:∠BE2C=∠BEC;
(3)猜想:若∠En=α度,那∠BEC等于多少度?(直接寫出結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙F交BD于點(diǎn)C,交AD于點(diǎn)E,CG⊥AD于點(diǎn)G,連接FE,F(xiàn)C.
(1)求證:GC是⊙F的切線;
(2)填空: ①若∠BAD=45°,AB=2 ,則△CDG的面積為 .
②當(dāng)∠GCD的度數(shù)為時(shí),四邊形EFCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,A(1,a)、B(b,1),其中a、b滿足+(a+b-7)2=0.
(1) 求a、b的值;
(2) 平移線段AB至CD,其中A、B的對(duì)應(yīng)點(diǎn)分別為C、D,若D的坐標(biāo)為(0,n)且n<0,若四邊形ABDC的面積為20,求D的坐標(biāo);
(3)在(2)的條件下,將線段AB繞點(diǎn)A以每秒80的速度順時(shí)針旋轉(zhuǎn),同時(shí)線段CD繞點(diǎn)D以每秒20的速度順時(shí)針旋轉(zhuǎn)(當(dāng)AB旋轉(zhuǎn)到一周時(shí)兩線段同時(shí)停止旋轉(zhuǎn)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),直線AB與直線CD的夾角為600?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com